首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Mechanistic Origin of Superionic Lithium Diffusion in Anion-Disordered Li6PS5X Argyrodites
【24h】

Mechanistic Origin of Superionic Lithium Diffusion in Anion-Disordered Li6PS5X Argyrodites

机译:阴离子无序Li6PS5X石中超离子锂扩散的机理起源

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The rational development of fast-ion-conducting solid electrolytes for all-solid-state lithium-ion batteries requires understanding the key structural and chemical principles that give some materials their exceptional ionic conductivities. For the lithium argyrodites Li_(6)PS_(5)X (X = Cl, Br, or I), the choice of the halide, X, strongly affects the ionic conductivity, giving room-temperature ionic conductivities for X = {Cl,Br} that are ×10~(3) higher than for X = I. This variation has been attributed to differing degrees of S/X anion disorder. For X = {Cl,Br}, the S/X anions are substitutionally disordered, while for X = I, the anion substructure is fully ordered. To better understand the role of substitutional anion disorder in enabling fast lithium-ion transport, we have performed a first-principles molecular dynamics study of Li_(6)PS_(5)I and Li_(6)PS_(5)Cl with varying amounts of S/X anion-site disorder. By considering the S/X anions as a tetrahedrally close-packed substructure, we identify three partially occupied lithium sites that define a contiguous three-dimensional network of face-sharing tetrahedra. The active lithium-ion diffusion pathways within this network are found to depend on the S/X anion configuration. For anion-disordered systems, the active site–site pathways give a percolating three-dimensional diffusion network; whereas for anion-ordered systems, critical site–site pathways are inactive, giving a disconnected diffusion network with lithium motion restricted to local orbits around S positions. Analysis of the lithium substructure and dynamics in terms of the lithium coordination around each sulfur site highlights a mechanistic link between substitutional anion disorder and lithium disorder. In anion-ordered systems, the lithium ions are pseudo-ordered, with preferential 6-fold coordination of sulfur sites. Long-ranged lithium diffusion would disrupt this SLi_(6) pseudo-ordering, and is, therefore, disfavored. In anion-disordered systems, the pseudo-ordered 6-fold S–Li coordination is frustrated because of Li–Li Coulombic repulsion. Lithium positions become disordered, giving a range of S–Li coordination environments. Long-ranged lithium diffusion is now possible with no net change in S–Li coordination numbers. This gives rise to superionic lithium transport in the anion-disordered systems, effected by a concerted string-like diffusion mechanism.
机译:合理开发用于全固态锂离子电池的快速离子传导固体电解质需要了解使某些材料具有特殊离子电导率的关键结构和化学原理。对于泥质锂Li_(6)PS_(5)X (X = Cl, Br, or I),卤化物X的选择对离子电导率有很大影响,X={Cl,Br}的室温离子电导率比X=I高×10~(3)。这种变化归因于不同程度的 S/X 阴离子紊乱。当 X = {Cl,Br} 时,S/X 阴离子是取代无序的,而当 X = I 时,阴离子亚结构是完全有序的。为了更好地了解取代性阴离子紊乱在实现快速锂离子转运中的作用,我们对具有不同量的 S/X 阴离子位点紊乱的 Li_(6)PS_(5)I 和 Li_(6)PS_(5)Cl 进行了第一性原理分子动力学研究。通过将 S/X 阴离子视为一个四面体紧密堆积的子结构,我们确定了三个部分占据的锂位点,这些位点定义了一个连续的面共享四面体三维网络。发现该网络中的活性锂离子扩散途径取决于 S/X 阴离子构型。对于阴离子无序系统,活性位点-位点通路给出了一个渗透的三维扩散网络;而对于阴离子有序系统,关键的位点-位点通路是不活跃的,从而形成一个不连贯的扩散网络,锂运动仅限于围绕 S 位置的局部轨道。从每个硫位点周围的锂配位角度分析锂亚结构和动力学,突出了取代阴离子紊乱和锂紊乱之间的机制联系。在阴离子有序体系中,锂离子是赝有序的,硫位点具有优先的 6 倍配位。长程锂扩散会破坏这种SLi_(6)的伪有序,因此不受欢迎。在阴离子无序体系中,由于Li-Li库仑排斥,伪有序的6倍S-Li配位受挫。锂的位置变得无序,从而产生一系列 S-Li 配位环境。现在可以进行长程锂扩散,而 S-Li 配位数没有净变化。这在阴离子无序系统中产生了超离子锂传输,受协同弦状扩散机制的影响。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号