...
首页> 外文期刊>Journal of advanced transportation >Optimization Model Based on Reachability Guarantee for Emergency Facility Location and Link Reinforcement
【24h】

Optimization Model Based on Reachability Guarantee for Emergency Facility Location and Link Reinforcement

机译:Optimization Model Based on Reachability Guarantee for Emergency Facility Location and Link Reinforcement

获取原文
获取原文并翻译 | 示例
           

摘要

The reasonable location of emergency facilities plays an important role in both predisaster service and postdisaster relief. Moreover, damage to the transportation network often affects the accessibility of demand points, which can seriously hamper timely rescue operations. Reasonable location of emergency facilities and reinforcement of fragile roads are two important strategies to improve the reachability of demand points. In this paper, we proposed a biobjective optimization model to determine locations of emergency facilities and links to be reinforced given a limited budget. Each demand point is allocated a primary facility and a backup facility, the former can provides normal service, and the latter is prepared for postdisaster relief. One goal of the model is to minimize the operating cost of normal services, and another goal is to maximize the reachability guarantee of demand points. The novelty and contribution of this paper are that we defined the reachability by introducing damage tolerance instead of link failure probability. Based on this, we defined the reachability guarantee to deal with the worst scenario of disasters. By embedding the max-flow problem of the reachability guarantee into the emergency facility location problem, the locations of emergency facilities and links to be reinforced can be determined simultaneously. The methodology is applied to a simplified Sioux Falls transportation network. Results such as the trade-off curve of two goals, budget efficiency, and the effect of reinforcement demonstrated the effectiveness of the model.

著录项

  • 来源
    《Journal of advanced transportation》 |2020年第3期|4648908.1-4648908.12|共12页
  • 作者

    Yu Wuyang; Liu Jijun;

  • 作者单位

    Hangzhou Dianzi Univ, Sch Management, Hangzhou 310018, Zhejiang, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号