首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >Deep neural operator for learning transient response of interpenetrating phase composites subject to dynamic loading
【24h】

Deep neural operator for learning transient response of interpenetrating phase composites subject to dynamic loading

机译:用于学习动态载荷作用下互穿相复合材料瞬态响应的深度神经算子

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Additive manufacturing has been recognized as an industrial technological revolution for manufacturing, which allows fabrication of materials with complex three-dimensional (3D) structures directly from computer-aided design models. Using two or more constituent materials with different physical and mechanical properties, it becomes possible to construct interpenetrating phase composites (IPCs) with 3D interconnected structures to provide superior mechanical properties as compared to the conventional reinforced composites with discrete particles or fibers. The mechanical properties of IPCs, especially response to dynamic loading, highly depend on their 3D structures. In general, for each specified structural design, it could take hours or days to perform either finite element analysis (FEA) or experiments to test the mechanical response of IPCs to a given dynamic load. To accelerate the physics-based prediction of mechanical properties of IPCs for various structural designs, we employ a deep neural operator (DNO) to learn the transient response of IPCs under dynamic loading as surrogate of physics-based FEA models. We consider a 3D IPC beam formed by two metals with a ratio of Young's modulus of 2.7, wherein random blocks of constituent materials are used to demonstrate the generality and robustness of the DNO model. To obtain FEA results of IPC properties, 5000 random time-dependent strain loads generated by a Gaussian process kennel are applied to the 3D IPC beam, and the reaction forces and stress fields inside the IPC beam under various loading are collected. Subsequently, the DNO model is trained using an incremental learning method with sequence-to-sequence training implemented in JAX, leading to a 100X speedup compared to widely used vanilla deep operator network models. After an offline training, the DNO model can act as surrogate of physics-based FEA to predict the transient mechanical response in terms of reaction force and stress distribution of the IPCs to various strain loads in one second at an accuracy of 98. Also, the learned operator is able to provide extended prediction of the IPC beam subject to longer random strain loads at a reasonably well accuracy. Such superfast and accurate prediction of mechanical properties of IPCs could significantly accelerate the IPC structural design and related composite designs for desired mechanical properties.
机译:增材制造已被公认为制造业的工业技术革命,它允许直接从计算机辅助设计模型制造具有复杂三维 (3D) 结构的材料。使用两种或两种以上具有不同物理和机械性能的组成材料,可以构建具有 3D 互连结构的互穿相复合材料 (IPC),与具有离散颗粒或纤维的传统增强复合材料相比,具有卓越的机械性能。工控机的机械性能,特别是对动态载荷的响应,很大程度上取决于其三维结构。通常,对于每个指定的结构设计,可能需要数小时或数天的时间来执行有限元分析(FEA)或实验,以测试IPC对给定动态载荷的机械响应。为了加速基于物理的IPC在各种结构设计中的力学性能预测,我们采用深度神经算子(DNO)来学习IPC在动态载荷下的瞬态响应,作为基于物理的有限元分析模型的替代。我们考虑了由两种金属形成的 3D IPC 光束,其 Young 模量比为 2.7,其中使用随机的组成材料块来证明 DNO 模型的通用性和鲁棒性。为了获得IPC特性的有限元分析结果,将高斯过程犬舍产生的5000个随机瞬态应变载荷施加到三维工控机梁上,并收集了工控机梁内部在各种载荷下的反作用力和应力场。随后,使用增量学习方法对 DNO 模型进行训练,并在 JAX 中实现序列到序列训练,与广泛使用的普通深度算子网络模型相比,速度提高了 100 倍。离线训练后,DNO模型可以作为基于物理的有限元分析的替代物,以98%的准确率预测IPC在一秒钟内对各种应变载荷的反作用力和应力分布的瞬态力学响应。此外,学习到的操作员能够以相当高的精度对承受更长随机应变载荷的 IPC 光束进行扩展预测。这种对工控机力学性能的超快速和准确预测可以显著加速工控机结构设计和相关复合材料设计,以获得所需的力学性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号