...
首页> 外文期刊>Thin-Walled structures >Intermittently stiffened cold-formed steel GFRP composite lightweight built-up beams: Experimental investigation and performance assessment
【24h】

Intermittently stiffened cold-formed steel GFRP composite lightweight built-up beams: Experimental investigation and performance assessment

机译:Intermittently stiffened cold-formed steel GFRP composite lightweight built-up beams: Experimental investigation and performance assessment

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Previous attempts to develop lightweight cold-formed steel (CFS) composite sections have successfully improved their buckling strengths but have been limited to unstiffened profiles only. This paper reports the results of an experimental program on the flexural behavior of newly developed CFSGFRP (Glass Fiber Reinforced Plastic) composite built-up open-section beams. In total, six large-scale specimens were tested under four-point loading with simply supported boundary conditions. To counter the inherent limitation of premature local buckling in the thin-walled CFS sections under compressive stresses, various combinations of intermittent stiffening and GFRP plank packing were adopted to improve the performance of the CFS GFRP lightweight composite beam specimens. The intermittent stiffening and GFRP plank packing were used judiciously in the compression flange and the web region of the specimens. A conventional open-section built-up beam was fabricated using two plain channels fastened through the web as a benchmark to evaluate the flexural performance of the composite beams. Furthermore, a hot-rolled steel beam with equivalent dimensions was also tested to give a broader comparison. The flexural performance of all the beams was assessed in terms of peak strength, initial stiffness, load-deformation response, failure modes and strength-to-weight parameter. The results confirmed the structural feasibility of adopting GFRP to form CFS lightweight built-up beams. The incorporation of GFRP planks significantly improved the flexural capacity by about 180 compared to the conventional CFS built-up beams. They also helped in attaining about 80 of the equivalent hot-rolled steel beam's flexural strength, resulting in highly efficient built-up beams for practical applications.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号