首页> 外文期刊>Planetary and space science >Plasma drilling on Martian ice: Enabling efficient deep subsurface access to Mars' polar layered deposits
【24h】

Plasma drilling on Martian ice: Enabling efficient deep subsurface access to Mars' polar layered deposits

机译:在火星冰上进行等离子体钻探:实现对火星极地层状沉积物的高效深层地下访问

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Mars' polar layered deposits (PLD) contain the best historical record of the Amazonian time period. Deep sub-surface access at Mars' poles is challenging due to the restriction of Mars' atmospheric condition. Traditional terrestrial mechanical drilling methods using drilling fluids are not feasible in these conditions and the melting probe approach is very inefficient due to heat loss. For ice in Mars' polar condition, the increase in surface area due to cracks would greatly reduce its thermal conductivity. This will lead to a higher thermal efficiency and an easier access to polar layered deposits during melting or sublimation. The preliminary results with pulsed plasma ice drilling, using localized electric breakdown with electric energy input per pulse up to 80 J, were promising under both Mars and Earth conditions. To simulate Mars' polar condition, a vacuum vessel system was designed and implemented with a pulsed discharge circuit, ice plate, controlled liquid nitrogen cooling, and CO2 gas feed -in. A simplified heat conduction model was established for estimating the heat conduction at various porosities for homogenous water ice and CO2 gas mixture using COMSOL under two scenarios including constant thickness of mixture layer and constant thermal mass of the mixture layer under the heat source. The simulation results for both scenarios indicated more reduction of heat loss with an increasing porosity. Experimental studies of thermal conductivity measurement of granular ice under the Earth condition inside a freezer using a custom thermal needle probe with known porosity proved the concept that voids/cracks in ice can reduce the thermal conduc-tivity. Based on simulation and experimental results, the classic melting probe model is extended with porous ice-CO2 mixture to estimate the power consumption on Martian ice at varying descending speed. Plasma drilling with limited power is promising for accessing Mars' PLD and can also be expanded to planetary exploration in searching for life on other planets.
机译:火星的极地层状沉积物(PLD)包含亚马逊时期的最佳历史记录。由于火星大气条件的限制,火星两极的深层地下通道具有挑战性。在这些条件下,使用钻井液的传统陆地机械钻井方法不可行,并且由于热损失,熔化探针方法效率非常低。对于火星极地条件下的冰,裂缝导致的表面积增加会大大降低其导热性。这将导致更高的热效率,并在熔化或升华过程中更容易进入极性层状沉积物。脉冲等离子体冰钻探的初步结果,使用局部电击穿,每个脉冲的电能输入高达80 J,在火星和地球条件下都是有希望的。为了模拟火星的极地条件,设计并实施了一个真空容器系统,该系统具有脉冲放电回路、冰板、受控液氮冷却和 CO2 气体进料。利用COMSOL软件建立了简化的热传导模型,用于估算热源下混合层厚度恒定和混合层热质量两种情景下均质水冰和CO2气体混合物在不同孔隙度下的热传导。两种情景的仿真结果表明,随着孔隙率的增加,热损失进一步减少。在冷冻机内使用具有已知孔隙率的定制热针探头对地球条件下的颗粒冰进行热导率测量的实验研究证明了冰中的空隙/裂缝会降低热导率的概念。基于仿真和实验结果,将经典的熔融探针模型与多孔冰-CO2混合物进行扩展,以估计火星冰在不同下降速度下的功耗。功率有限的等离子体钻探对于访问火星的PLD很有希望,也可以扩展到行星探索,以寻找其他行星上的生命。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号