...
首页> 外文期刊>KSCE journal of civil engineering >Basement Design for Vibration Reduction of High-Rise Buildings under Metro Operation
【24h】

Basement Design for Vibration Reduction of High-Rise Buildings under Metro Operation

机译:Basement Design for Vibration Reduction of High-Rise Buildings under Metro Operation

获取原文
获取原文并翻译 | 示例

摘要

Vibration induced by metro operation on the underground line is transmitted to the buildings above the line, which adversely affects on the normal life and work of human in the building. To study this problem, based on the plate-shell vibration theory, a plate-column-plate coupled model is constructed to analyze the influence of plate thickness, plate elastic modulus and column arrangement on the vibration in mechanism firstly. Relying on a practical engineering problem, two models are established, namely a train-track coupled dynamic model and a monolithic track bed-tunnel-soil-building model, loading fastener force from the train-track coupled dynamic model on the monolithic track bed, vibration propagates to high-rise building through soil-building coupling. Field test is conducted to verify the reliability of the numerical model. On the basis, the vibration law of building under different basement floor thicknesses, basement floor material and arrangement of non-permanent columns are studied. Results show that changing the basement design parameters has different effects. The Z vibration level of building floor decreases with the increase of basement floor thickness. Basement floor thickness increases by 0.02 m, the Z vibration level of the floor decreased by 1.4 - 2.2 dB at most. The decrease of elastic modulus leads to a slight decrease of the Z vibration level of building, the change is less than 1 dB. Without changing the arrangement of basement load-bearing columns, reducing non-permanent structural columns significantly reduces the Z vibration level, with attenuation of up to 5.1 dB.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号