...
首页> 外文期刊>Journal of Hydrology >Intra-pore tortuosity and diverging-converging pore geometry controls on flow enhancement due to liquid boundary slip
【24h】

Intra-pore tortuosity and diverging-converging pore geometry controls on flow enhancement due to liquid boundary slip

机译:孔内迂曲度和发散-收敛孔隙几何形状对液体边界滑移导致的流动增强的控制

获取原文
获取原文并翻译 | 示例

摘要

The liquid boundary slip, in contrast to the conventional no-slip boundary condition, exists due to a less wetting or the non-wetting nature of sediment grains, which can significantly control fluid hydraulics of porous media, specifically which consists of smaller pore-throats, e.g., siltstones and mudstones. Most studies to date presume a no-slip boundary condition and a few who have investigated the aspects of slip-boundary presume a simplified straight tube or a non-tortuous pore shape. Therefore, how the degree of tortuosity and pore-geometry control flow enhancement in porous media remains underexplored. In this computational study, we design a set of diverging-converging staggered tortuous (DCST) pores, which account for a variable amount of intra-pore tortuosity. To compare, a set of capillary pores are designed that can account for tortuosity by taking the form of sinusoidal and helical shapes. Our results quantify how the diverging-converging nature of pore geometry and its intra-pore tortuosity alone have a significant impact on modifying the microscopic flow behavior -accounting of which is a key in upscaling these effects to a macroscopic continuum or the Darcy-scale. We find, DCST pores contribute to an asymptotic flow enhancement behavior in response to boundary slip. In comparison, capillary pores lead to a linearly 'unlimited' flow enhancement. This unlimited nature of flow enhancement can lead to differences over several orders in magnitude. We test theoretical models to predict flow enhancement from all pores. We determine constitutive relations that can predict flow enhancement as a function of intra-pore tortuosity and hydraulic shape factor. We examine the physical mechanisms of energy dissipation and find that the microscopic fluid-structure interactions can contribute to significant variation in how intra-pore geometry and boundary slip manifest as the flow enhancement factor relevant to the continuumscale. We find that the 'asymptote' in the
机译:与传统的无滑移边界条件相比,液体边界滑移是由于沉积物颗粒的润湿性较低或非润湿性而存在的,这可以显着控制多孔介质的流体水力学,特别是由较小的孔喉组成,例如粉砂岩和泥岩。迄今为止,大多数研究都假定存在无滑移边界条件,而少数研究过滑移边界方面的研究则假定为简化的直管或非曲折的孔隙形状。因此,多孔介质中的迂曲程度和孔隙几何形状如何控制流动增强仍未得到充分探索。在这项计算研究中,我们设计了一组发散-收敛交错曲折(DCST)孔隙,这些孔隙解释了孔内迂曲的可变量。相比之下,设计了一组毛细孔,可以通过采用正弦和螺旋形状的形式来解释迂曲。我们的研究结果量化了孔隙几何的发散-收敛性质及其孔内迂曲程度如何对改变微观流动行为产生重大影响 - 这是将这些效应放大到宏观连续体或达西尺度的关键。我们发现,DCST孔隙有助于响应边界滑移的渐近流动增强行为。相比之下,毛细管孔导致线性的“无限”流动增强。这种流量增强的无限性质会导致几个数量级的差异。我们测试了理论模型,以预测所有孔隙的流动增强。我们确定了本构关系,可以预测作为孔内迂曲度和水力形状因子函数的流动增强。我们研究了能量耗散的物理机制,发现微观流固耦合可以导致孔内几何形状和边界滑移如何表现为与连续尺度相关的流动增强因子的显着变化。我们发现

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号