首页> 外文期刊>International journal of hydrogen energy >Enhanced catalytic activities of Fe anchored on graphene substrates for water splitting and hydrogen evolution
【24h】

Enhanced catalytic activities of Fe anchored on graphene substrates for water splitting and hydrogen evolution

机译:铁锚定在石墨烯衬底上的催化活性增强,用于分解水和析氢

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Water splitting on single Fe atom catalyst anchored on defective graphene surfaces by using first-principles density functional theory. The structure and electronic features of isolated Fe atom anchored on three graphene surfaces with single vacancy (SV), double vacancy (DV) and Stone-Wales structure (SW) defect were systematically explored. The three structures prove to be high activity and high stability on catalytic. The adsorption and the energy barrier of water splitting as well as hydrogen adsorption free energy delta G(H lowast;) on single-atom Fe were also studied. The sequence of promoted splitting activity is found to be Fe@SW > Fe@DV > Fe@SV. Furthermore, by hydrogen adsorption free energy delta G(H lowast;) analysis, we predict that the HER catalytic activity of graphene nanosheet can be improved by anchoring Fe atom on SV and DV structures, which are comparable to or even better than noble metals. It is found that the catalytic activity of water splitting and HER can be changed with the shift in d-band center with respect to Fermi-level. Detailed investigations on electronic structure of Fe@graphene catalytic systems disclose an obvious orbital hybridization coupling and charge transfer between atom Fe on carbon surfaces and water molecule. These results provide us with new insight into design of high performer and low-cost catalysts and may inspire potential applications in the fields of clean and renewable energy. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:利用第一性原理密度泛函理论对锚定在有缺陷石墨烯表面的单个Fe原子催化剂进行水分解.系统地探究了孤立的Fe原子锚定在单空位(SV)、双空位(DV)和Stone-Wales结构(SW)缺陷三个石墨烯表面上的结构和电子特征。这三种结构在催化时具有高活性和高稳定性。研究了单原子Fe的吸附和分解水的能垒以及氢吸附自由能δG(H∗)。发现促进的分裂活动的顺序是Fe@SW > Fe@DV > Fe@SV。此外,通过氢吸附自由能δG(H∗)分析,我们预测将Fe原子锚定在SV和DV结构上可以提高石墨烯纳米片的HER催化活性,这些结构与贵金属相当,甚至优于贵金属。研究发现,分解水和HER的催化活性可以随着d波段中心相对于费米能级的偏移而改变。对Fe@graphene催化体系电子结构的详细研究揭示了碳表面原子Fe与水分子之间明显的轨道杂化耦合和电荷转移。这些结果为我们提供了对高性能和低成本催化剂设计的新见解,并可能激发在清洁和可再生能源领域的潜在应用。(C) 2022 年氢能出版物有限责任公司。由以下开发商制作:Elsevier Ltd.保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号