...
首页> 外文期刊>Applied and Environmental Microbiology >Sequence-Specific Capture of Oligonucleotide Probes (SCOPE): a Simple and Rapid Microbial rRNA Quantification Method Using a Molecular Weight Cutoff Membrane
【24h】

Sequence-Specific Capture of Oligonucleotide Probes (SCOPE): a Simple and Rapid Microbial rRNA Quantification Method Using a Molecular Weight Cutoff Membrane

机译:Sequence-Specific Capture of Oligonucleotide Probes (SCOPE): a Simple and Rapid Microbial rRNA Quantification Method Using a Molecular Weight Cutoff Membrane

获取原文
获取原文并翻译 | 示例

摘要

A method named sequence-specific capture of oligonucleotide probes (SCOPE) was developed for quantification of microbial rRNA molecules in a multiplex manner. In this method, a molecular weight cutoff membrane (MWCOM) was used for the separation of fluorescence-labeled oligonucleotide probes hybridized with rRNA from free unhybridized probes. To demonstrate proof of concept, probes targeting bacteria or archaea at different taxonomic levels were prepared and were hybridized with rRNAs. The hybridization stringency was controlled by adjusting reaction temperature and urea concentration in the mixture. Then, the mixture was filtered through the MWCOM. The rRNA and hybridized probes collected on the MWCOM were recovered and quantified using a spectrophotometer and fluorospectrometer, respectively. The method showed high accuracy in detecting specific microbial rRNA in a defined nucleic acid mixture. Furthermore, the method was capable of simultaneous detection and quantification of multiple target rRNAs in a sample with sensitivity up to a single-base mismatch. The SCOPE method was tested and benchmarked against reverse transcription-quantitative PCR (RT-qPCR) for the quantification of Bacteria, Archaea, and some key methanogens in anaerobic sludge samples. It was observed that the SCOPE method produced more reliable and coherent results. Thus, the SCOPE method allows simple and rapid detection and quantification of target microbial rRNAs for environmental microbial population analysis without any need for enzymatic reactions. IMPORTANCE Microorganisms play integral roles in the Earth's ecosystem. Microbial populations and their activities significantly affect the global nutrient cycles. Quantification of key microorganisms provides important information that is required to understand their roles in the environment. Sequence-based analysis of microbial population is a powerful tool, but it provides information only on relative abundance of microorganisms. Hence, the de

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号