...
首页> 外文期刊>Computational intelligence and neuroscience >Parameter Estimation in Step Stress Partially Accelerated Life Testing under Different Types of Censored Data
【24h】

Parameter Estimation in Step Stress Partially Accelerated Life Testing under Different Types of Censored Data

机译:Parameter Estimation in Step Stress Partially Accelerated Life Testing under Different Types of Censored Data

获取原文
获取原文并翻译 | 示例

摘要

A long testing period is usually required for the life testing of high-reliability products or materials. It is possible to shorten the testing process by using ALTs (accelerated life tests). Due to the fact that ALTs test products in harsher settings than are typical use conditions, the life expectancy of the objects they evaluate is reduced. Censored data in which the specific failure timings of all units assigned to test are not known, or all units assigned to test have not failed, may arise in ALTs for a variety of reasons, including operational failure, device malfunction, expense, and time restrictions. In this paper, we have considered the step stress partially accelerated life test (SSPALT) under two difierent censoring schemes, namely the type-I progressive hybrid censoring scheme (type-I PHCS) and the type-II progressive censorship scheme (type-II PCS). The failure times of the items are assumed to follow NH distribution, while the tampered random variable (TRV) model is used to explain the effect of stress change. In order to obtain the estimates of the unknown parameters, the maximum likelihood estimation (MLE) approach is adopted. Furthermore, based on the asymptotic theory of MLEs, the approximate confidence intervals (ACIs) are also constructed. The point estimates under two censoring schemes are compared in terms of root mean squared errors (RMSEs) and relative absolute biases (RABs), while ACIs are compared in terms of their lengths and coverage probabilities (CPs). The performance of the estimators has been evaluated and compared under two censoring schemes with various sample sizes through a simulation study. Simulation results show that estimates with type-I PHCS outperform estimates with type-II PCS in terms of RMSEs, RABs, lengths, and CPs. Finally, a real-world numerical example of insulating ?uid failure times is presented to show how the approaches will work in reality.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号