首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Reactions of ethoxycarbonylmethylene(triphenyl)phosphorane with someortho-quinones in the presence of triphenylphosphine, alcohols and acetic anhydride
【24h】

Reactions of ethoxycarbonylmethylene(triphenyl)phosphorane with someortho-quinones in the presence of triphenylphosphine, alcohols and acetic anhydride

机译:乙氧羰基亚甲基(三苯基)膦烷与一些邻醌在三苯基膦、醇和乙酸酐存在下的反应

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1992 React ions of Ethoxycarbonylmethylene( triphenyl) phosphorane with some ortho-Quinones in the Presence of Triphenylphosphine, Alcohols and Acetic Anhydride Demetrios N. Nicolaides," Spyros G. Adamopoulos, Demetrios A. Lefkaditis, Konstantinos E. Litinas and Petroula V. Tarantili Laboratory of Organic Chemistry, University of Thessaloniki, Thessaloniki 54006,Greece The reactions of ortho-quinones la, lc and Id with ylide 2 in the presence of triphenylphosphine afforded the ylides Ila, Ilc and Ild and compound 12. The reactions of la and Ic with 2 in refluxing methanol or ethanol gave compounds 16 and 17 respectively, while the reactions of la-d with 2 in acetic anhydride yielded the acetates 18a, 18b, 18d and 19b, 19d, the furan derivative 24 and the ylide 25.Compounds 8 and 9 were also obtained in most of the above reactions. Wittig reactions of ylides Ila, Ilc with p-nitrobenzaldehyde and of ylide 2 with coumarins 8a and 29 resulted in compounds 14a, 14c, 26 and 30 respectively. The transformations of compounds 18, 19 into 8,9 as well as of compound 26 into 28 were also studied. Bestmann and Lang reported' in 1969 that the reactions of ortho-quinones la-b and of 4-anilino- 1,2-naphthoquinone with ethoxycarbonylmethylene(tripheny1)phosphorane2,as well as with its methoxy analogue, afford the corresponding 4-alkoxy- carbonylcoumarins 8, via the suggested intermediates 3,4,6, depicted in Scheme 1. Recently Soliman et af. reported that reaction of the same ylides with benzoaphenazine-8,9-dione gives the corresponding dialkyl 1,2-dihydrofuro- 1,2-dicarboxy- lates 5, again via intermediates 3and 4.Very recently we found that the reactions of 2with o-quinones la-d in dichloromethane solutions afford, besides the coumarins 8a4,the y-lactones 9b and 9c,the hydroxy derivatives 6d (33) and 12(8) and the ylide llc (373, according to the mechanisms proposed in Scheme I.We also found that, when the reactions between 2 and la-are carried out in ethyl vinyl ether solution and the ylide 2 is added portionwise into the reaction mixture, the intermediates o-quinone methanides 3a, 3b, 3d are trapped by the dienophile to give the corresponding cis-and trans-pyran derivatives 20a, 20b, 20d in a high total yield.Similarly, the 2-methyl-2-phenyl disubstituted pyran derivative was also ob- tained as the main product from the reactions between la and 2 in the presence of x-methylstyrene, whereas 4-acyl- or 4-benzoyl- substituted pyrans were obtained from the reactions between la and the ylides Ph,P=CHCOR (R = Me, Ph) in ethyl vinyl ether s~lution.~These results show that the corresponding Wittig monoolefination products initially formed can be trapped easily and under mild conditions by dienophiles, as can the other known o-quinone methanides,' though these intermediates are also very reactive towards the starting ylides used and the triphenylphosphine, generated in situ. In connection with these studies we now report our results on the reactions of the ylide 2 with some n-quinones, performed (a) in the presence of an excess of triphenylphosphine; (b) in refluxing methanol or ethanol and (c) in hot acetic anhydride solutions.Furthermore, the reaction between la or 8aand 2at high temperature, the Wittig reaction of ylides 1la and 1 lc,prepared for reactions (a), as well as some transformations of the triesters 18and 19,are reported. Results and Discussion The title reactions studied and the products obtained are depicted in Schemes 1-3. To a stirred dichloromethane solution of a mixture of quinone la (1 equiv.) and triphenylphosphine (3 equiv.), the ylide 2 (1 equiv.) was added at room tempera- ture and portionwise, during 2 h. The mixture was then stirred for further 20 h at ambient temperature and was afterwards heated at reflux for 48 h to give, on cooling, crystals of 3- (triphenylphosphoranylidene)phenanthro9,lO-bfuran-2( 3H)-one6 lla in 79 yield.The reaction between lc, triphenyl-phosphine and ylide 2 (added during 4 h) for 24 h at room temperature afforded, after separation of the reaction mixture by column chromatography 5,7-di-tert-butyl-3-triphenylphos-phoranylidenebenzobfuran-2(3H)-one 1lc (49), along with ethyl 6,8-di-tert-butyl-2-oxo-2H-chromene-4-carboxylate 8c (1 2) and 5,7-di-rert-butyl-3-ethoxycarbonylmethylene-benzobfuran-2(3H)-one 9c (6). When the reaction was carried out by immediate addition of the ylide 2and the reaction mixture was then stirred for 45 h at room temperature, the ylide llc was obtained in 60 yield.Compounds lla and llc are identical with those prepared previously in 63 and 58 yield respectively'under dry conditions and nitrogen atmosphere from the reactions of quinones la and lc with (2,2-di-ethoxyviny1idene)triphenylphosphorane and triphenylphos-phine. The tetrachloroquinone Id proved to react with triphenylphosphine under the conditions described above. Thus, when triphenylphosphine was added to a dichloro-methane solution of Id, an exothermic reaction took place immediately and before addition of the ylide, finally yield- ing tetrachlorocatechol 13 (690/,), obviously via the further hydrolysis of the initially formed triphenyldioxaphospholene intermediate. The quinone la reacts with triphenylphosphine in a similar way, but at a higher temperature (70 '-C).' When the quinone Id was added portionwise to a stirred dichloromethane solution of equimolar amounts of triphenylphosphine and of ylide 2and the reaction mixture was stirred for further 24 h at room temperature and then subjected to column chromato- graphy, compound 13 (1373, ethyl (3,4,5,6-tetrachloro-2-hydroxypheny1)acetate 12 (3779 and 4,5,6,7-tetrachloro-3-triphenylphosphoranylidenebenzobfuran-2(3H)-one 1Id (2) were obtained.Although this experimental procedure leads again to the formation of the desired o-quinone methanide 3d and further to its trapping by triphenylphosphine, the betaine thus produced is mainly hydrolysed to the hydroxy derivative 12,prior to the expected lactonization to the stable ylide 1Id.A possible explanation for the predominant formation of com- pound 12 to compound lld, suggested by a referee, is that the electron withdrawing effects of the four chlorine substituents in 10d reduce the electron density of the phenoxy anion, thereby rendering it less nucleophilic.A similar electronic effect can also explain the reported isolation of the hydroxy derivative 6d (in 33 yield) and the carbonyl absorption of compound lld at v/cm-' 1710. It should be noted that the same C=O bond in 284 J. CHEM. SOC. PERKIN TRANS. I 1992 R' R' F' R2)$ R3 R4 + Ph3P=CHC02Et 2 R2* R3 wlH H Et C02Et R4 CO2Et + R3 @ CHC02Et led 9 b,c to(a --EtOH -EtOH r R' -Ph3P __c 0 II0 6 a4 7b-d Ac~O 1 R' -0 + R2amp;co2EtR3 17 $ C02Et 15 18 a, b, d 19 b, d 10 a, c,d -EtOHI CI OH R3R2* Et CI R4 C02Et 11 a, c, d 12 16 13 20 a, b, d for 11 a.c 14 a, c (I+ II) Scheme 1 compounds lla and llc appeared6 at v/cm-' 1680. The butyl-3-(4-nitrobenzylidene)benzofuran-2(3~)-ones 14c, (38) recorded spectral data for compound 1Id are in agreement with and 14c1, (49) were isolated. All these Wittig products the suggested ylide form. exhibited the carbonyl band in the range v/cm-' 1765-1780, 3H)ones8 More Treatment of compound 1la with 4-nitrobenzaldehyde in like other similar 3-alkylidenebenzofuran-2( refluxing dichloromethane for 48 h afforded 3-(4-nitrobenzyl- evidence is necessary for the configurational assignment of the idene)phenanthro9, 10-bfuran-2(3H)-one 14a in 17 yield.products 14 though the 2-configuration seems more favourable When the same reaction was carried out in refluxing toluene, for 14a due to expected reduced steric hindrance. The Wittig compound 14a was again obtained, but in 67 yield. By a reaction of naphtho2,1 -bfuran-l,2-dione with ylide 2 and also similar treatment of ylide llc with 4-nitrobenzaldehyde in a with its methoxy analogue has also been used' for the refluxing dichloromethane solution, the two isomeric 5,7-di-tert- preparation of similar alkyl 2-oxonaphthoC2,l -bfuran- 1(2H)- J. CHEM. SOC. PERICINTRANS. 1 1992 1oa Ph3P=C: COMe -@-H+ COpEtbsol; C-PPh3 I / COpEt 25 21 2 24 Scheme 2 8a 2 26 28 27 m+2 -WH-COzEt 29 30 Scheme 3 ylideneacetates, though recently it has been reported that the reactions of some furan-2,3-diones with the same ylides lead to the Wittig olefination of the lactonic carbonyl and not of the keto carbonyl.' When the reaction of quinone la with ylide 2 was carried out in refluxing methanol and the ylide was added portionwise, the expected" Michael addition of the methanol to the corre- sponding o-quinone methanide intermediate 3a predominated over all the other competing reactions of 3a, leading originally to the formation of ether 15.Thus, to a precipitate of quinone la in refluxing methanol the ylide 2 (1.2 equiv.) was added in portions during 4 h and the reaction mixture was heated at reflux for further 20 h, until all the quinone was consumed, to give, after filtration, crystals of 3-methoxyphenanthr09,10-bfuran-2(3H)-one 16 (31), obviously by further lactonization of the ether 15 initially formed.Separation of the filtrate by column chromatography afforded an additional amount of 16 (17, total yield 48), along with ethyl 2-oxo-2H-dibenzo- f;hchromene-4-carboxylate 8a (35).Treatment of quinone lc with 2 in refluxing methanol resulted in the formation of a mixture of ethyl and methyl derivatives, obviously by part transesterification of the original ethyl derivatives, which were only roughly separated by chromatography and not further studied. After that the reaction of lc with 2 was carried out in refluxing ethanol for 29 h to give ethyl (3,5-di-tert-butyl-2- hydroxypheny1)ethoxyacetate 17 (5), along with compounds 8c (43),9c (5) and llc (4).We next studied the reactions between the quinones lad and the ylide 2 in the presence of acylating agents, in an effort to trap the suggested intermediates 6 and/or 7 by their acylation into the corresponding acetoxy derivatives 18 and/or 19, and to shed more light into the problem concerning the formation and the configuration of the y-lactones 9b and 9c obtained previ~usly.~We note that further lactonization of the ethyl fumarate intermediates 6 could lead to formation of the coumarins 8 and/or to formation of the (E)-y-lactones 9. That was previously suggested by us for compounds 9b and 9c on the basis of their 'H NMR ~pectra.~ Furthermore, the lactonization of the ethyl maleate intermediates 7 could lead only to the formation of the (Z)-y-lactones 9.Although it is known that phosphorus ylides react easily with acylating agents to give at first acyl salts and further on the corresponding acyl ylides, we initially tried the reaction between compounds la and 2 (2 equiv.) in ethyl acetate solution, at room temperature. Separation of the reaction mixture by column chromatography gave only compound 8a (69). Next a solution of quinone la and ylide 2 (2 equiv.) in excess of acetic anhydride, used also as a solvent, was kept at room temperature for 24 h to yield the expected acetoxy compound 18a (28) and compound 8a (53).When the same reaction was carried out at 60deg;C, compounds 18a (62), 8a (25) and the unexpected ethyl 2-methylphenanthro9,l0-bfuran-3-carboxylate24 (7) were obtained.Further transformation of the intermediate 10a (Scheme 1) to the o-hydroxy ylide 21, followed firstly by acetylation of 21 into the ester ylide 22 and then by an intramolecular Wittig reaction of the ylide group with the carbonyl of the ester group l2 of intermediate 22, can account for the formation of the furan derivative 24 (Scheme 2). As an alternative process to compound 24 could also be considered the acylation of 21 to the phosphonium derivative 23, followed by an intramolecular attack of the hydroxy to the acetyl carbonyl of 23 to the same betaine intermediate, as known from the Wittig reaction of 22, and in analogy to the reported previously 'internal Wittig' rea~tion.'~ The intermediate 23 could also be formed by the Wittig monoolefination of quinone la with the stable and less reactiveI4 ylide 25,'lb generated in situ by acetylation of a part of 2, and by further attack of the corresponding o-quinone methanide thus formed, with triphenylphosphine. However, in a control experiment it was found that a mixture of compounds la and 25 remained unchanged, even after reflux for 24 h in chloroform. In agreement with the proposed structure 24 the product under question showed in the 'H NMR spectrum the characteristic low field absorptions for the fused phenanthrofuran system: along with those for the methyl and ethoxycarbonyl sub- stituents, as well as correct molecular ion and analytical data. The reaction between lb, 2 and acetic anhydride at 60 "Cfor 10 h afforded the acetoxy isomers 18b (36) and 19b (23) along with the coumarin derivative 8b (9).When the quinone lc was treated with ylide 2 in acetic anhydride solution under the same conditions, only compounds 8c (4),9c (73) and the ylide 25 (19) were obtained. Probably, the bulky substituent R' (But) in the intermediates 6c and/or 7c prevents the intermolecular attack of the adjacent hydroxy by the acetic anhydride. Finally the reaction between compounds Id and 2 in acetic anhydride afforded compounds 18d (3373, 19d (24) and 25 (27). Compound 18d is identical in all respects with that previously obtained by treatment of the isolated compound 6d with acetic anh~dride.~ The suggested trans-configuration 18a, for the sole acetoxy product, obtained from quinone la, and 18b, 18d for the major acetoxy isomers obtained from quinones lb and Id respectively, is based on the one hand on the fact that in absence of the acetic anhydride only the coumarin 8a and mairly the coumarin 8b are obtained from quinones la and lb, obviously via the further 6-lactonization of the fumarate intermediates 6a and 6b, and on the other hand on the fact that the isolated compound 6d was converted by prolonged heating in refluxing toluene quanti- tatively (89) into the coumarin 8d.3 The recorded chemical shifts for the olefinic proton in the 'H NMR spectra of com- pounds Ma, 18b, 18d and 6d3 are very similar to each other and also to those of y-lactones 9b and 9c, and are quite different from those recorded for the acetoxy maleates 19b and 19d.This observation can be used as an evidence in favour of the (E)-configuration of compounds 9b and 9c, as it was previously suggested by US.^ Furthermore, when an ethanolic solution of compound 18a was heated at reflux for 6 h in presence of hydrochloric acid, it afforded only compound 8a in almost 100 yield. Compound 18d gave, under the same conditions, quantitatively the hydroxy derivative 6d. Unfortunately, both the acetoxy compounds 18b and 19b were found to give, by a similar treatment, both the lactonization products 8b and 9b.When an ethanolic solution of 18b, containing hydrochloric acid, was left to stand at room temperature for 64 h, and the reaction mixture was then separated by column chromato- graphy, compounds 8b (52) and 9b (773, along with some unreacted starting compound 18b (34) were obtained. By a similar treatment of the isomer 19b for only 9 h the starting compound 19b (40), the coumarin 8b (41) and the y-lactone 9b (16), identical in all respects with that obtained from 18b, were isolated from the reaction mixture. Although the con- version of both acetoxy compounds 18b and 19b to the same lactonization products proves beyond any doubt that they are configurational and not peri-isomers, it does not confirm with any certainty the route of formation and the configuration of the compounds under question.It is also of interest to notice once more that the y-lactones 9 were obtained only from quinones withR4 = H. In an unsuccessful effort to trap the intermediate 3a via coumarin 29, we found that dissolution of quinone la in an excess (5 equiv.) of melted coumarin 29 and further portionwise addition of ylide 2 (1.5 equiv.) to the heated mixture led to compound 8a (47) and ethyl (3,4-dihydro-4-ethoxycarbonyl-2H-phenanthro9,10-bpyran-2-yl)acetate 28 (1273, along with triphenylphosphine and triphenylphosphine oxide. No trapping products ' of the intermediate 3a by coumarin 29 were detected or isolated from the reaction mixture. We considered that compound 28 was formed from compound 8a according to the reaction sequence depicted in Scheme 3.In agreement with the above consideration, when a toluene solution of equimolar amounts of compounds 2 and 8a was heated at reflux for 3 days, it gave ethyl (4-ethoxycarbony1-2H-phenanthro9,10-b)pyran-2-y1idene)acetate 26 in 48 yield. Furthermore, a toluene solution of compound 26 and triphenylphosphine (2.5 equiv.) was heated at reflux for 48 h and the reaction mixture was then J. CHEM. SOC. PERKIN TRANS. 1 1992 separated by column chromatography to give compound 28 in 18 yield. Coumarin 29 also reacted with ylide 2, but at higher temperatures. A mixture of equimolar amounts of compounds 2 and 29 was heated at 115-120 "C for 48 h to give ethyl (2H-benzoCblpyran-2-ylidene)acetate30 (35).The recorded spectral data ('H NMR, IR and MS) and the analytical data of the knew compounds of Scheme 3 support the structures proposed for them, although more evidence is necessary for their configurational assignment. It is of interest to notice that the reported reactions of some other lactones with phosphorus ylides did not give the normal Wittig olefination products.'6 It must also be pointed out that attack of triphenylphosphine to the Wittig product 26, and further transformation of the initial phosphonium derivative thus formed to the final product 28, can proceed in more than one step, the bis-ylide 27, depicted in Scheme 3, being one of the possible intermediates. Similar reactions of triphenylphosphine with maleic anhydrides, maleimides and isomaleimides to give the corresponding phosphorus ylides have been known since 1968.'' In conclusion, the reactions between o-quinones and alkoxy- methylene(tripheny1)phosphoranes are of significant synthetic value, since they can be used for the preparation of several different compounds, depending on the particular reagents present and the reaction conditions applied.Experimental M.p.s were determined on a Kofler hot-stage apparatus and are uncorrected. IR spectra were obtained with a Perkin-Elmer 297 spectrophotometer. 'H NMR spectra were recorded with deuteriochloroform as solvent on a Bruker AW 80 (80 MHz) spectrometer with SiMe, as internal standard. Coupling con- stant values, J, are given in Hz.Mass spectra were determined on a VG-250spectrometer with ionization energy maintained at 70 eV. Reactions of o-Quinones la, lc, Id with YIide 2 in the Presence of TriphenyIph0sphine.-(a) To a stirred solution of phenan- threne-9,lO-quinone la (0.104 g, 0.5 mmol) and triphenyl- phosphine (0.393 g, 1.5 mmol) in dichloromethane (5 cm3) the ylide 2 (0.174 g, 0.5 mmol) was added portionwise during 2 h. The reaction mixture was then stirred for a further 20 h at ambient temperature and then for a further 48 h under reflux and then was cooled to roam temperature to give crystals of 3-(triphenylphosphoranylidene)phenanthro9,l0-bfuran-2-(3H)-one lla (195 mg, 7970, m.p. 25Ck252 "C (decomp.) (from dichloromethane) (lit.,6 m.p. 252 "C).(b)To a stirred solution of 3,5-di-tert-butyl-l,2-benzoquinone lc (0.22 g, 1 mmol) and triphenylphosphine (0.786 g, 3 mmol) in dichloromethane (6 cm3) the ylide 2 (0.348 g, 1 mmol) was added portionwise during 4 h and the reaction mixture was stirred for further 24 h at room temperature and then evaporated to dryness. Chromatography on silica gel with di- chloromethane as the eluent gave three fractions. The first frac- tion gave 5,7-di-tert-butyl-3-ethoxycarbonylmethylenebenzo-bfuran-2(3H)-one 9c (20 mg, 673, m.p. 119-121 "C (from hexane) (lit.,3 m.p. 119-121 "C).The second fraction gave ethyl 6,8-di-tert-butyl-2-oxo-2H-chromene-4-carboxylate8c (41 mg, 1279, m.p. 113-115 "C (from hexane) (lit.,3 m.p. 113-115 "C).The third fraction gave 5,7-di-tert-butyl-3-triphenylphos-phoranylidenebenzobfuran-2(3H)-one llc (0.248 g, 49) m.p. 247-249 "C (from methanol) (lit.,6 m.p. 249 "C). When the same reaction between o-quinone lc (0.44 g, 2 mmol), triphenylphosphine (1.572 g, 6 mmol) and the ylide 2 (0.696 g, 2 mmol) was carried out by adding them at once in dichloromethane (1 7 cm3) under stirring and the reaction mixture was stirred for 48 h at room temperature and then was J. CHEM. soc. PERKIN TRANS. 1 1992 concentrated to a small volume, crystals of compound 1lc were obtained (0.605 g, 60). (c) To a stirred solution of triphenylphosphine (0.262 g, 1 mmol) and ylide 2 (0.348 g, 1 mmol) in dichloromethane (10 cm3) tetrachloro-1,2-benzoquinoneId (0.246 g, 1 mmol) was added portionwise during 2 h and the reaction mixture was then stirred for further 24 h at room temperature.After evaporation of the solvent, the residue was chromatographed on silica gel with dichloromethane as the eluent. Triphenylphosphine (34 mg) was eluted first. The second fraction gave ethyl (3,4,5,6-tetrachloro-2-hydroxypheny1)acetate 12 (0.1 16 g, 3773, m.p. 129-131 "C (dichloromethane-hexane) (lit.,3 m.p. 129-1 31 "C). The third fraction gave tetrachlorocatechol 13 (33 mg, 13), m.p. 193-195 "C (from ethanol) (lit.," m.p. 194-195 "C). The next fraction gave 4,5,6,7-tetrachloro-3-triphenylphosphoranyl-idenebenzobfirran-2(3H)-one1Id (1 1 mg, 2), m.p. 275-277 "C (from dichloromethane) (Found: C, 58.3; H, 3.15.C26H1 ,C1402P requires C, 58.7; H, 2.8); v,,,(Nujol)/cm-' 1710; GH(CDC13)7.34-7.84 (m); m/z 538 (M+ + 8, I(), 536 (M+ + 6,2), 534(M+ + 4,6),532(M+ + 2,23), 530 (M+,8) and 165 (100). When the reaction between triphenylphosphine (0.13 1 g, 0.5 mmol), the quinone Id (0.246 g, 1mmol) and the ylide 2 (0.348 g, 1 mmol) in dichloromethane (5 cm3) was carried out as above, and then hexane was added to the reaction mixture, crystals of compound Ild (24 mg, 4.5) were precipitated. When the quinone Id (62 mg, 0.26 mmol) and triphenylphosphine (0.198 g, 0.75 mmol) was first dissolved in dichloromethane (2 cm3) a spontaneous reaction between them took place, before the addition of the ylide 2, yielding tetrachlorocatechol 13 (44 mg, 69).Wittig Reactions uf Yylides 1la and 1Id with p-Nitrobenzal- dehyde. Preparation of Compounds 14a and 14~~,~,.-(a) To a solution of ylide Ila (0.107 g, 0.216 mmol) in toluene (17 cm3) p-nitrobenzaldehyde (33 mg, 0.218 mmol) was added and the reaction mixture was heated under reflux for 48 h. After the evaporation of the solvent the residue was triturated with dichloromethane to yield red crystals of 3-(4-nitrobenzyl-idene)phenanthro9,1O-bfuran-2(3H)-one 14a (53 mg, 67), m.p. 256-258 "C (from dichloromethane) (Found: C, 74.75; N, 4.1; H, 3.9. C,,Hl,N04 requires C, 75.2; N, 3.8; H, 3.6); v,,,(Nujol)/cm-' 3020, 1765, 1595, 1520 and 1345; d,(CDCl,) 7.48-7.92 (4 H, m), 7.98-8.50 (6 H, m) and 8.64-8.94 (3 H, m); m/z 367 (M+, loo), 339 (42), 294 (30), 293 (33), 292 (23), 265 (38) and 263 (47).(b) A solution of the ylide Ilc (95 mg, 0.19 mmol) and p-nitrobenzaldehyde (29 mg, 0.19 mmol) in dichloromethane (4 cm3) was heated under reflux for 48 h. After evaporation of the solvent, the residue was separated by preparative TLC on silica gel hexane--dichloromethane (1 :l). The faster moving band afforded 5,7-di-tert-butyl-3-(4-nitrobenzylidene)benzobfuran-2(3H)-one 14c, (27 mg, 38), m.p. 162-164 "C (dichloro- methane-hexane) (Found: C, 73.15; N, 3.9; H, 6.35. C23H25N04 requires C, 72.8; N, 3.7; H, 6.6); v,,,(Nujol)/cm-' 1769, 1618, 1590, 1520 and 1340; GH(CDC1,) 1.40 (9 H, s), 1.46 (9 H, s), 7.27 (1 H, s), 7.39 (1 H, s), 7.57 (1 H, s) and 8.17-8.38 (4 H, m); m/z 379 (M+,70), 363 (100) and 335 (16).The next band gave the other isonzer 14C11 (35 mg, 4973, m.p. 183-185 "C (dichloro- methane-hexane) (Found: C, 73.2; N, 3.3; H, 6.9. C2,HZ5NO4 requires C, 72.8; N, 3.7; H, 6.6); v,,,(Nujol)/cm-l 1779, 1630, 1600, 1525 and 1340; GH(CDC13)1.23 (9 H, s), 1.42 (9 H, s), 7.34-7.44 (2 H, m), 7.77 (1 H, s), 7.82 (2 H, d, J7.2) and 8.35 (2 H, d, J 7.2); m/z 379 (M', 56), 363 (100) and 335 (8). The later moving band gave p-nitrobenzaldehyde (3 mg). 3-Metho.u~~piienanthvoC9,1O-b,furun-2( 3H)-one 16.-To a stirred suspension of qiiinone la (0.208 g, 1 mmol) in methanol 287 (10 cm3) heated at reflux was added the ylide 2 (0.418 g, 1.2 mmol) portionwise over 4 h and the reaction mixture was then refluxed for a further 20 h under stirring.The hot reaction mixture was then filtrated to give crystals of compound 16 (81 mg, 31), m.p. 22amp;222 "C (decomp.) (from methanol) (Found: C, 77.1; H, 4.3. C17H12O3 requires C, 77.25; H, 4.6); vm,,(Nujol)/cm-' 1815; S,(CDC13) 3.31 (3 H, s), 7.34 (1 H, s, partially overlapped by CHCI,), 7.56-7.90 (5 H, m), 8.27-8.44 (1 H, m) and 8.57-8.74 (2 H, m); m/z 264 (M+,4473, 236 (56), 221 (loo), 220 (81) and 205 (19). The filtrate was evaporated to dryness. Chromatography on silica gel with dichloromethane- hexane (3: 1) as eluent gave first an additional amount of compound 16 (35 mg, 13), total yield 44. The next fraction gave compound 8a (0.1 12 g, 35). Ethyl (33- Di-tert-btityl-2-hydro.xyphen~~l)erho.uq~acetate17.-To a solution of quinone lc(0.44 g,2 mmol) in ethanol (1 7 cm3), heated at reflux, was added the ylide 2 (0.696 g,2 mmol) over 5 h and the reaction mixture was then refluxed for a further 24 h.The solvent was evaporated and the oily residue was triturated with ether to yield crystals of compound llc (45 mg, 4). The filtrate was evaporated to dryness. Chromatography of the residue on silica gel with hexane-dichloromethane (3: 141 :1) as eluent gave three fractions. The first fraction gave compound 9c (24 mg, 4). The second fraction gave compound 17 (35 mg,573, m.p. 125-127 "C (from hexane) (Found: C, 71.15; H, 9.9. C20H3204 requires C, 71.4; H, 9.67;); v,,,(Nujol)/cm-' 3400 and 1735; amp;(CDC13) 1.25 (3 H, t, J6.4), 1.38 (3 H, t, J7.2), 3.60 (2H,q7J6.4),4.l9(2H,q,J7.2),5.35(1H7s),7.27(1H,s)and 8.68 (1 H, s); nz/z 336 (M+, 18), 335 (66), 318 (16), 307 (35), 305 (43), 291 (17), 277 (44), 263 (38), 234 (44), 233 (99), 232 (64), 230 (60), 218 (35) and 217 (100).The third fraction afforded compound 8c (0.285 g,43). Reaction of Quinone la with Ylide 2 in Ethyl Acetate.-A solution of quinone la (0.104 g,0.5 mmol) and ylide 2 (0.348 g, 1 mmol) in ethyl acetate (5 cm3) was stirred at room temperature. The reaction was monitored by TLC examination of the mixture. After 2 h all the starting quinone was consumed. The solvent was evaporated and the residue was chromatographed on silica gel, with hexane-dichloromethane (1 :1) as eluent to give ethyl 2-oxo-2H-dibenzof,hchromene-4-carboxylate8a (0.11 g,69",), m.p.158-1 59 "C (from ethanol) (lit.,' m.p. 158 "C). Reactions of Quinones lad with Ylide 2 in Acetic Anhydride. Preparation of Compounds 18a, 18b, 18d, 19b, 19d and 24.-(a) A solution of quinone la (0.4 16 g, 2 mmol) and ylide 2 (1.392 g, 4 mmol) in acetic anhydride (5 cm3) was heated at ca 60 "C for 8 h. The reaction mixture was then poured into water (30 cm3) and extracted with ether (4 x 40 cm3). The extract was dried over Na2S04 and evaporated to dryness. Chromatography on silica gel with hexane-ethyl acetate (9.9:0.1-+9 : 1) as eluent gave three fractions. The first fraction gave ethj'l 2-methyl- phenanthroC9, lO-b, furan-3-carbo.~ylate 24 (44 mg, 773, m.p. 109-1 10 "C (dichloromethane-hexane) (Found: C, 78.8; H, 5.4.C20H160, requires C, 78.9; H, 5.3); v,,,(Nujol)/cm-' 1705 and 1615;dH(CDC13)1.47 (3 H, t, J 8.0), 2.80 (3 H, s), 4.50 (2 H, d, J8.0), 7.43-7.79 (4 H, m), 8.18-8.37 (1 H, m), 8.57-8.79 (2 H, m) and 9.04-9.26 (1 H, m); mi2 304 (M+,1000/,), 278 (16), 277 (30), 276 (24), 275 (51), 231 (16), 230 (19), 202 (59) and 152 (27). The second fraction afforded compound 8a (0.16 g, 25). The third fraction gave colourless crystals of diethjd (1O-aceto.xy-9-phenanthryl).funmrate 18a (0.503 g, 620/,), m.p. 70-72 "C (from ethanol) (Found: C, 70.8; H, 5.6. C24H22O6 requires C, 70.9; H, 5.5); v,,,(Nujol)/crn-' 1760, 1725 and 1720; SH(CDC13)0.63 (3 H, t, J8.0), 1.10(3 H, t, J9.0), 2.35 (3 H, s), 3.81 (2 H, q, J9.0), 4.19 (2 H, q, J KO), 7.26-7.92 (6 H, m) and 8.42-8.79 (2 H, m); nz/z 407 (15), 406 (M', 24), 364 (loo), 318 (64) and 290 (53).When the same reaction between compounds la and 2 in acetic anhydride was carried out at room temperature compounds 8a (5373 and 18a (28) were again obtained. (b) The reaction between quinone lb (0.158 g, 1 mmol) and ylide 2 (0.696 g, 2 mmol) in acetic anhydride (2 cm3) at 60 "C for 10 h was carried out and the reaction mixture was worked up, as described above for quinone la, to give, from the first fraction, compound 8b (23 mg, 973, m.p. 147-148 "C (chloroform- hexane) (lit.,' m.p. 148 "C). The next fraction gave dietlijvl (1-aceto.u~-2-napl?th~l)maleate19b (83 mg, 23), m.p. 52-54 "C (from ethanol) (Found: C, 67.3; H, 5.55.C,,H2,06 requires C, 67.4; H, 5.7); v,,,(Nujol)/cm-' 1760 and 1720; dH(CDC13) 1.29 (6H,t, J7.2),2.42(3H,s),4.25(2H7q,J7.2),4.34(2H7q,J7.2), 6.30 (1 H, s) and 7.34-7.91 (6 H, m); m/z 356 (M+, 7873, 312 (loo), 266 (54) and 240 (42). (c) The reaction between the quinone Ic (0.44 g, 2 mmol) and the ylide 2 (1.392 g, 4 mmol) in acetic anhydride (5 cm3) for 24 h, at room temperature, was carried out and the reaction mixture was worked up as above to give first compound 9c (0.48 g, 737'J. The next fraction afforded compound 8c (26 mg, 4). The third fraction gave ylide 25 (0.302 g, 19), m.p. 171-173 "C (dichloromethane-hexane) (lit.,' lb m.p. 172-1 74 "C). (d) The reaction of quinone Id (0.492 g, 2 mmol) with ylide 2 (1.392 g, 4 mmol) in acetic anhydride at 60 "C for 30 min was carried out and the reaction mixture was worked up as described for quinone la.The following fractions were eluted. The fraction eluted first gave 18d (0.29 g, 3373, m.p. 61-63 "C (from hexane) (lit.,3 m.p. 61-63 "C). The next fraction afforded diethyl(2-aceto.x~~-3,4,5,6-tetrachlorophenyl)maleute19d (0.21 g, 24), oil (Found: C, 43.0; H, 3.1. C16H14c1406 requires C, 43.3; H, 3.2); v,,,(liquid film)/cm-' 1787, 1735, 1725, 1640 and 1560; G,(CDCI,) 1.23 (3 H, t, J 7.0), 1.32 (3 H, t, J 7.4), 2.31 (3 H, s), 4.21 (2 H, q, J 7.0), 4.28 (2 H, q, J 7.4) and 6.21 (1 H, s); m/z 448 (M+ + 6, 0.8), 446 (M+ + 4, 4), 444 (M+ + 2, 9) and 442 (M +,6). The next fraction gave triphenylphosphine oxide (0.46 g, 83) and the following fraction afforded ylide 25 (0.425 g, 27).Conversion of18a into 8a.-A solution of compound 18a (67 mg, 0.165 mmol) and concentrated hydrochloric acid (0.5 cm3) in ethanol (3 cm3) was heated at reflux for 6 h. Then the reaction mixture was cooled to room temperature to give crystals of compound 8a (52 mg, 99"/1). Conuersion qf 18b into 8b and 9b.-A solution of compound 18b (0.1 16 g, 0.326 mmol) and concentrated hydrochloric acid (0.5cm3) in ethanol (3 cm3) was left to stand for 64 h at room temperature. The solvent evaporated to dryness. Separation by preparative TLC on silica gel hexane-dichloromethane (1 :l) afforded from the faster moving band compound 9b (6 mg, 773, m.p. 187-189 "C (chloroform-hexane) (lit.,3 m.p.187-189 "C). The next band gave compound 8b (51 mg, 52). The slower moving band gave unchanged compound 18b (39 mg, 34). Conuersion qf 19b into 8b and 9b.---A solution of compound 19b (82 mg, 0.23 mmol) and concentrated hydrochloric acid (0.5 cm3) in ethanol (3 cm3) was stirred for 9 d at room temperature. The solvent evaporated to dryness. Chromatography on silica gel with dichloromethane-hexane (1 : 1) gave three fractions. The first fraction afforded compounds 9b (10 mg, 1604)). The second fraction gave compound 8b (25 mg, 41xJ. The third fraction gave unreacted compound 19b (36 mg, 40). Conversion of'18d into 6d.-A solution of compound 18d (20 mg, 0.045 mmol) and concentrated hydrochloric acid (0.3 cm3) in ethanol (2 cm3) was heated at reflux for 24 h.The solvent evaporated to dryness to give diethyl (2,3,4,5-tetrachloro-6- J. CHEM. SOC. PERKIN TRANS. I 1992 hydroxypheny1)fumarate 6d (18 mg, 10O0.), m.p. 76-78 C (ethyl acetate- hexane) (lit.,3 m.p. 76 -78 -C). Ethjil (4- Etlio.bsol;-?~c.urhon!~l-2H -phennnthro9, IO-b pj3rcrn-2-j9I-idene)ucetate 26.-A solution of compound 8a (0.3 18 g, 1 mmol) and ylide 2 (0.348 g, 1 mmol) in toluene (5 cm3) was heated at reflux for 3 d. The solvent evaporated to dryness in a rotary evaporator. Chromatography on silica gel with ethyl acetate- hexane ( 1 :2) gave compound 26 (0.186 g,48), m.p. 140-1 4 1 "C (from ethanol) (Found: C, 74.1; H, 5.3. C24H2005 requires C, 74.2; H, 5.2); v,,,(Nujol)/cm-' 1735, 1730, 1680, 1630 and 1600; d~(cDC13) 1.25 (3 H, t, J9.0), 1.49 (3 H, t, J9.0), 4.28 (2 H, q, J9.0),4.60(2H,q, J9.0),5.56(1 H7s),7.40-7.93(6H,m)and 8.16-8.64 (3 H, m); rn/z 389 (25), 388 (M', 92), 343 (19), 316 (89), 288 (18) and 214 (100).The next fraction afforded unreacted compound 8a (99 mg, 3 1). Ethjd (3,4- Dihydro-4-e tho.u~~curbonj~l-2H -pilenunthro 9,10- bp?~ran-2-~~1)acetate28.-(u) A solution of compound 26 (78 mg, 0.2 mmol) and triphenylphosphine (0.131 g, 0.5 mmol) in toluene (5 cm3) was heated at reflux for 48 h. The solvent was evaporated to dryness. Chromatography on silica gel with hexane-dichloromethane (I :1) as eluent gave compound 28 (14 mg, 18), m.p. 70-72 "C (from ethanol) (Found: C, 73.3; H, 6.3. C24H240, requires C, 73.45; H, 6.2); v,,,(Nujol)/cm-' 1740, 1730 and 1625; dH(CDC1,) 1.02-1.87 (6 H, m), 2.20-2.84 (4 H, m), 3.5W.15 (6 H, m), 7.05-7.82 (5 H, m) and 8.40-8.72 (3 H, m); m/z 392 (M', 56), 320 (48) and 248 (100).(b) To a stirred melted mixture of quinone la (0.208 g, 1 mmol) and coumarin 29 (0.73 g, 5 mmol), heated at cu. 70 'C, ylide 2 (0.522 g, 1.5 mmol) was added in portions during 2 h. The reaction mixture was separated by column chromatography on silica gel. Elution with hexane-ethyl acetate (9: 1) gave three fractions. The first fraction gave compound 28 (47 mg, 12:9. The second fraction gave coumarin 29 (0.701 g, 96) and the third fraction gave compound 8a (0.149 g, 47). Ethjd (2H-Ben=obp~~ran-2-~~lidene)crcetate30.-A mixture of coumarin 29 (0.292 g, 2 mmol) and ylide 2 (0.696 g, 2 mmol) was heated in an oil bath at CCI.115 "C for 48 h, and then chromatographed on silica gel with hexane+thyl acetate (2: 1) as eluent to give compound 30 (0.151 g, 3573, m.p. 75-76 'C (from ethanol) (Found: C, 72.3; H, 5.6. C13H1203 requires C, 72.2; H, 5.6"/,); vmax(Nujol)/cm-l 1695sh, 1680 and 1600; h~(cDC13) 1.27 (3 H, t, J9.0), 4.16 (2 H, 9, J9.0), 5.38 (1 H, s), 6.88-7.36 (5 H, m) and 7.83 (1 H, d, J 14); m/z 216 (M', 40deg;/;,), 171 (87) and 114 (100). References I H. J. Bestmann and H. J. Lang, Tctrdirciron Lett., 1969, 2101. 2 F. M. Soliman, K. M. Khalil and G. Abdelnaim, Pho.sp1ioru.sSulfiri. Rcltrt. Eh., 1988,35, 41. 3 D. N. Nicolaides, S. G. Adamopoulos, D. A. Lefkaditis and K.E. Litinas. J. Cheni. Soc., Pdiitl Trm.7. I, 1990,2 127. 4 D. N. Nicolaides, D. A. Lefkaditis, P. S. Lianis and K. E. Litinas. J. Clieni.Sot., Prrkiri 7'ruii.v. I, 1989, 2329. 5 J. Brugidou and H. Christol, Bull. Soc. Chirii. Fr., 1966, 2688; R. R. Schmidt, Tetr(hcdroti Lett., 1969, 5279; T. Inoue, S. Inoue and K. Sato, Choji. L~tt.,1989, 653. 6 R. W. Saalfrank, E. Ackermann, H. Winkler. W. Paul and R. Bohme. Clicwi.Bcr., 1980, 113, 2950. 7 J. W. Kelly, P. L. Robinson and S. A. Evans. Jr., J. Org. c'licrii., 1986, 51,4473. 8 ((1) K. Sunitha and K. K. Balasubramanian, Tc~trrrlic~tlrwii.1987. 43. 3269; (h) L. T. Byrne. L. M. Engelhardt, F. R. Hewgill and B. W. Skelton, J. C'licvii. Soc.. Pcrkiri Tr~ui.bsol;.I. 1989. 133. 9 V. 0.Kozminykh, E. N. Kozminykh and Yu. S. Andreichikov, Kliiiii. GctcrwtsiX.1. Soctiiii, 1989, 8, 1034. 10 D. A. Bolon, J. Org. Clicwi., 1970, 35. 3666; B. A. M. Oude-Alink, J. CHEM. SOC. PERKIN TRANS. 1 1992 A. W. K. Chan and C. D. Gutsche, J. Org. Chem., 1973. 38, 1993; L. Jurd and R. Y. Wong, Aust. J. Chem., 1981,34, 1645. 11 (a)A. W. Johnson, YIid Chemistry, ed. A. T. Blomquist, Academic Press, London 1966, pp. 102-106; (6) P. A. Chopard, R.J. G. Searle and F. H. Devitt, J. Org. Chem., 1965.30, 1015. 12 W. G. Dauben and D. J. Hart, Tetrahedron Left., 1975, 4353; W. Ding, P. Zhang and W. Cao, Tetrahedron Lett., 1987,28,81. 13 M. von Strandtmann, M. P. Cohen, C. Puchalski and J. Shave1 Jr., J. Org. Chem., 1968,33,4306. 14 I. Gosney and A. G. Rowley, Organophosphorus Reagents in Orgunic Sj*nfhesis, ed. J. I. Cadogan, Academic Press, London 1979, p. 22. 15 M. S. Chauhan, F. M. Dean, D. Matkin and M. L. Robinson, J. Chem. Soc., Perkin Trans. 1, 1973, 120. 16 C. A. Henrick, E. Bohme, J. A. Edwards and J. H. Fzied, J. Am. Chem. Soc., 1968, 90, 5926; H. Kise, Y. Ardse, S. Shiraishi, M. Seno and T. Asahara, J. Chem. SOC.,Chem. Commun., 1976, 299; J. Le Roux and M. Le Corre, J. Chem. SOC.,Chem. Commun., 1989, 1464. I7 E. Hedaya and S. Theodoropoulos, Tetrahedron, 1968,24,2241. 18 T. Zincke and F. Kuster, Chem. Ber., 1888,21,2719. Paper 1 /03700E Received 19th July 1991 Accepted 2nd October 199 1
机译:J. CHEM. SOC. PERKIN TRANS. 1 1992 乙氧羰基亚甲基(三苯基)磷烷与一些邻醌在三苯基膦、醇和乙酸酐存在下的反应离子 Demetrios N. Nicolaides,“ Spyros G. Adamopoulos, Demetrios A. Lefkaditis, Konstantinos E. Litinas and Petroula V. Tarantili Laboratory of Organic Chemistry, University of Thessaloniki, Thessaloniki 54006,Greece 邻醌la的反应, lc 和 Id 与酰化物 2 在三苯基膦存在下得到酰化物 Ila、Ilc 和 Ild 以及化合物 12。la和Ic在回流甲醇或乙醇中与2的反应分别得到化合物16和17,而la-d与2在醋酐中的反应得到乙酸盐18a、18b、18d和19b、19d、呋喃衍生物24和酰化物25。酰化物Ila,Ilc与对硝基苯甲醛以及酰化物2与香豆素8a和29的wittig反应分别产生了化合物14a,14c,26和30。还研究了化合物18、19转化为8,9以及化合物26转化为28的过程。Bestmann 和 Lang 在 1969 年报道,邻醌 la-b 和 4-苯胺基-1,2-萘醌与乙氧羰基亚甲基(三苯基 1)磷烷 2 及其甲氧基类似物的反应,通过方案 1 中建议的中间体 3,4,6 得到相应的 4-烷氧基羰基香豆素 8。最近 Soliman 等人。报道了相同的酰化物与苯并[a]吩嗪-8,9-二酮的反应,得到相应的二烷基1,2-二氢呋喃-1,2-二羧酸酯5,再次通过中间体3和4.最近我们发现,除了香豆素8a4,y-内酯9b和9c,羟基衍生物6d(33%)和12(8%)以及ylide LLC(373, 根据方案I中提出的机理,我们还发现,当2和la-在乙基乙烯基醚溶液中进行反应时,将酰化物2分份加入反应混合物中时,邻醌甲烷中间体3a,3b,3d被亲二烯试剂捕获,得到相应的顺式和反式吡喃衍生物20a, 20b、20d总收率高。同样,2-甲基-2-苯基二取代吡喃衍生物也是在x-甲基苯乙烯存在下la和2之间的反应中获得的主要产物,而4-酰基或4-苯甲酰基取代的吡喃是从la与乙基乙烯基醚s~lution中的酰亚化物Ph,P=CHCOR(R=Me,Ph)反应中获得的~这些结果表明,最初形成的相应的Wittig单烯烃产物可以很容易地在温和的情况下被捕获嗜二烯试剂的条件,其他已知的邻醌甲烷也可以,“尽管这些中间体对所使用的起始酰亚化物和原位产生的三苯基膦也非常反应。关于这些研究,我们现在报告了酰化物 2 与一些正醌反应的结果,这些反应是 (a) 在过量的三苯基膦存在下进行的;(b)在回流甲醇或乙醇中,(c)在热的乙酸酐溶液中。此外,还报道了la或8a和2在高温下的反应,酰亚化物1la和1 lc的Wittig反应,以及三酯18和19的一些转变。结果与讨论 所研究的标题反应和获得的产物在方案 1-3 中描述。在醌la(1当量)和三苯基膦(3当量)混合物的搅拌二氯甲烷溶液中,在室温下和2小时内按比例加入酰化物2(1当量)。然后将混合物在室温下再搅拌20小时,然后在回流下加热48小时,冷却后得到3-(三苯基膦亚基)菲[9,lO-b]呋喃-2(3H)-酮6 lla的晶体,收率为79%。在室温下,LC、三苯基-膦和酰化物2(在4小时内加入)之间的反应24小时,在柱层析中分离反应混合物5,7-二叔丁基-3-三苯基膦-2(3H)-酮1lc(49%),以及6,8-二叔丁基-2-氧代-2H-苯并吡喃-4-羧酸乙酯8c(1 2%)和5,7-二叔丁基-3-乙氧羰基亚甲基苯并[b]呋喃-2(3H)-酮9c(6%)。当通过立即加入酰化物2进行反应时,然后在室温下搅拌反应混合物45小时,得到的酰化物llc收率为60%。化合物lla和llc与先前制备的化合物相同,分别在干燥条件和氮气气氛下,醌la和lc与(2,2-二乙氧基乙烯基1亚胺)三苯基膦烷和三苯基膦的反应制备了63%和58%的收率。四氯醌Id被证明在上述条件下与三苯基膦反应。因此,当将三苯基膦加入到Id的二氯甲烷溶液中时,在加入酰化物之前立即发生放热反应,最终产生四氯邻苯二酚13(690/,),显然是通过最初形成的三苯基二草磷烯中间体的进一步水解。醌la以类似的方式与三苯基膦反应,但在更高的温度(70'-C)下。将醌Id分份加入到等摩尔量的三苯基膦和酰化物2的搅拌二氯甲烷溶液中,将反应混合物在室温下再搅拌24小时,然后进行柱层析,得到化合物13(1373,(3,4,5,6-四氯-2-羟基苯基1)乙酸乙酯12(3779和4,5,6,7-四氯-3-三苯基膦亚基苯并[b]呋喃-2(3H)-酮1Id(2%)。尽管该实验过程再次导致所需邻醌甲烷3d的形成,并进一步导致其被三苯基膦捕获,但由此产生的甜菜碱主要被水解为羟基衍生物12,然后预期内酮化为稳定的酰基化物1Id。 裁判认为,10d中四种氯取代基的吸电子作用降低了苯氧阴离子的电子密度,从而降低了其亲核性。类似的电子效应也可以解释所报道的羟基衍生物6d的分离(产率为33%)和化合物lld在v/cm-'1710时的羰基吸收。应该注意的是,284 J. CHEM. SOC. PERKIN TRANS.I 1992 R' R' F' R2)$ R3 R4 + Ph3P=CHC02Et 2 R2* R3 wlH H Et C02Et R4 CO2Et + R3 @ CHC02Et led 9 b,c to(a --EtOH -EtOH r R' -Ph3P __c 0 II0 6 a4 7b-d Ac~O 1 R' -0 + R2&co2EtR3 17 $ C02Et 15 18 a, b, d 19 b, d 10 a, c,d -EtOHI CI OH R3R2* Et CI R4 C02Et 11 a, c, d 12 16 13 20 a, b, d for 11 a.c 14 a, c (I+ II) 方案 1 化合物 lla 和 llc 出现在 v/cm-' 1680 处 6。化合物1Id的丁基-3-(4-硝基亚苄基)苯并呋喃-2(3~)-酮14c(38%)的光谱数据与14c1一致,分离出49%。所有这些 Wittig 产品都采用建议的 ylide 形式。表现出V/cm-' 1765-1780范围内的羰基带,3H)ones8 更多 用4-硝基苯甲醛处理化合物1la,就像其他类似的3-亚烷基苯并呋喃-2(回流二氯甲烷48小时一样,提供3-(4-硝基苄基)证据对于亚胺的构型分配是必要的)菲[9,10-b]呋喃-2(3H)-酮14a,收率为17%。 对于 14A,由于预期的空间位阻减少。再次获得Wittig化合物14a,但收率为67%。通过萘并[2,1-b]呋喃-l,2-二酮与酰化物2的类似反应,以及将ylide llc与4-硝基苯甲醛的类似物与其甲氧基类似物进行类似处理,也已用于回流二氯甲烷溶液,将两种异构体5,7-二叔-制备类似的烷基2-氧代萘2,l-b]呋喃-1(2H)-J. CHEM.1 1992 1oa Ph3P=C: COMe -@-H+ COpEt\ C-PPh3 I / COpEt 25 21 2 24 方案 2 8a 2 26 28 27 m+2 -WH-COzEt 29 30 方案 3 亚基乙酸盐,尽管最近有报道称,一些呋喃-2,3-二酮与相同亚基的反应导致乳酸羰基的 Wittig 烯烃化,而不是酮羰基。'当醌la与酰化物2的反应在回流甲醇中进行,并分批加入酰化物时,预期的“迈克尔”甲醇加成到相应的邻醌甲化物中间体3a中占主导地位,而不是3a的所有其他竞争反应,最初导致醚15的形成。并将反应混合物在回流下再加热20 h,直到全部醌被消耗掉,过滤后得到3-甲氧基菲0[9,10-b]呋喃-2(3H)-酮的晶体16(31%),显然是由醚15的进一步内酯化形成的。通过柱层析分离滤液可额外获得16(17%,总产率48%),以及乙基2-氧代-2H-二苯并[f;H]苯并吡喃-4-羧酸酯 8a (35%)。在回流甲醇中用2处理醌lc导致形成乙基和甲基衍生物的混合物,显然是通过原始乙基衍生物的部分酯交换反应,仅通过色谱法粗略分离,没有进一步研究。之后,将lc与2在回流乙醇中反应29小时,得到(3,5-二叔丁基-2-羟基苯基1)乙氧基乙酸乙酯17(5%),以及化合物8c(43%),9c(5%)和llc(4%)。接下来,我们研究了醌 lad 和酰化物 2 在酰化剂存在下的反应,努力将建议的中间体 6 和/或 7 酰化为相应的乙酰氧基衍生物 18 和/或 19,并进一步阐明有关 y-内酯 9b 和 9c 的形成和构型的问题 previ~usly.~我们注意到富马酸乙酯的进一步内酯化中间体6可导致香豆素8的形成和/或(E)-y-内酯9的形成。我们之前根据化合物 'H NMR ~pectra.~ 提出了化合物 9b 和 9c 的建议~ 此外,马来酸乙酯中间体 7 的内酯化只能导致 (Z)-y-内酯 9 的形成.尽管已知亚磷很容易与酰化剂反应,首先产生酰基盐,然后进一步产生相应的酰基酰化物, 我们最初尝试了化合物 la 和 2(2 当量)在室温下在乙酸乙酯溶液中的反应。通过柱层析分离反应混合物仅得到化合物8a(69%)。接下来,将醌la和酰化物2(2当量)超过乙酸酐(也用作溶剂)的溶液在室温下保持24小时,以产生预期的乙酰氧基化合物18a(28%)和化合物8a(53%)。当在60°C下进行相同的反应时,得到了化合物18a(62%)、化合物8a(25%)和意想不到的2-甲基菲并[9,l0-b]呋喃-3-羧酸乙酯24(7%)。进一步将中间体10a(方案1)转化为邻羟基酰化物21,然后首先将21乙酰化成酯基22,然后通过亚化物基团与中间体22的酯基l2的羰基的分子内Wittig反应,可以解释呋喃衍生物24的形成(方案2)。作为化合物 24 的替代方法,也可以认为 21 酰化为膦衍生物 23,然后是羟基对乙酰羰基 23 的分子内攻击,以相同的甜菜碱中间体,如 22 的 Wittig 反应所知道的那样,类似于先前报道的“内部 Wittig”rea~tion。~中间体23也可以由醌la与稳定且反应性较低的I4亚化物25,'lb的Wittig单烯烃化形成,由2的一部分乙酰化而原位生成,并由此形成相应的邻醌甲烷,与三苯基膦进一步攻击。然而,在对照实验中发现,化合物la和25的混合物即使在氯仿中回流24小时后仍保持不变。与所提出的结构24一致,所讨论的产物在'H NMR谱图中显示了熔融呋喃系统的特征低场吸收:以及甲基和乙氧羰基取代基的低场吸收,以及正确的分子离子和分析数据。lb,2和乙酸酐在60“C下反应10小时得到乙酰氧基异构体18b(36%)和19b(23%)以及香豆素衍生物8b(9%)。在相同条件下,用乙酸酐溶液中的酰化物2处理醌LC时,仅得到化合物8c(4%)、9c(73%)和ylide 25(19%)。中间体 6c 和/或 7c 中的笨重取代基 R' (But) 可能阻止了乙酸酐对相邻羟基的分子间攻击。最后,化合物 Id 和 2 在乙酸酐中的反应得到化合物 18d (3373, 19d (24%) 和 25 (27%)。化合物18d在所有方面都与先前通过用乙酸anh~dride处理分离的化合物6d获得的化合物相同。~ 建议的反式构型 18a,用于从醌 la 获得的单一乙酰氧基产物,以及 18b、18d,分别用于从醌 lb 和 Id 获得的主要乙酰氧基异构体,一方面基于这样一个事实,即在没有乙酸酐的情况下,只有香豆素 8a 和香豆素 8b 是从醌 la 和 lb 中获得的, 显然,通过富马酸盐中间体6a和6b的进一步6-内酯化,另一方面,分离的化合物6d通过长时间加热将甲苯定量(89%)转化为香豆素8d.3在马的'H NMR光谱中记录的烯烃质子的化学位移, 18b、18d和6d3彼此非常相似,也与y-内酯9b和9c非常相似,与乙酰氧基马来酸盐19b和19d的记录有很大不同。这一观察结果可以用作支持化合物 9b 和 9c 的 (E) 构型的证据,正如 US 先前建议的那样^ 此外,当化合物 18a 的乙醇溶液在盐酸存在下回流加热 6 小时时,它仅以几乎 100% 的收率提供化合物 8a。化合物18d,在相同条件下,定量得到羟基衍生物6d。不幸的是,乙酰氧基化合物 18b 和 19b 被发现通过类似的处理产生了内酰化产物 8b 和 9b。将含有盐酸的乙醇溶液18b在室温下静置64小时,然后用柱色谱法分离反应混合物,得到化合物8b(52%)和9b(773,以及一些未反应的起始化合物18b(34%)。通过对异构体19b进行类似的处理,仅9小时,从反应混合物中分离出起始化合物19b(40%)、香豆素8b(41%)和y-内酯9b(16%),它们在所有方面都与从18b获得的相同。尽管乙酰氧基化合物18b和19b转化为相同的内酯化产物,毫无疑问地证明它们是构型的,而不是周异构体,但它并不能肯定地证实所讨论化合物的形成途径和构型。同样有趣的是,再次注意到 y-内酯 9 仅从醌中获得,R4 = H。在通过香豆素 29 捕获中间体 3a 的努力中,我们发现醌 la 溶解在过量(5 当量)熔化的香豆素 29 中,并进一步将酰化物 2(1.5 当量)添加到加热的混合物中,导致化合物 8a (47%) 和(3,4-二氢-4-乙氧羰基-2H-菲并[9,10-b]吡喃-2-基)乙酸乙酯 28 (1273, 以及三苯基膦和三苯基氧化膦。未检测到或从反应混合物中分离出香豆素29的中间体3a的捕获产物。我们认为化合物28是由化合物8a形成的,根据方案中描述的反应顺序 3.In 与上述考虑一致,当等摩尔量的化合物2和8a的甲苯溶液在回流时加热3天时,它得到(4-乙氧基羰基1-2H-菲并[9,10-b)吡喃-2-y1idene)乙酸乙酯26,收率为48%。此外,将化合物26和三苯基膦(2.5当量)的甲苯溶液在回流中加热48小时,然后用柱层析分离反应混合物J. CHEM. SOC. PERKIN TRANS. 1 1992,得到化合物28,收率为18%。香豆素 29 也与酰化物 2 反应,但温度较高。将等摩尔量的化合物2和29的混合物在115-120“C下加热48小时,得到(2H-苯并吡喃-2-亚基)乙酸乙酯30(35%)。记录的光谱数据('H NMR、IR 和 MS)和方案 3 中已知化合物的分析数据支持为它们提出的结构,尽管它们的构型分配需要更多的证据。有趣的是,报道的其他一些内酯与亚磷的反应并没有产生正常的Wittig烯烃产物.'6还必须指出的是,三苯基膦对Wittig产物26的攻击,以及由此形成的初始膦衍生物的进一步转化到最终产物28,可以在多个步骤中进行, 方案3中描述的双酰基27是可能的中间体之一。自 1968 年以来,三苯基膦与马来酸酐、马来酰亚胺和异马来酰亚胺的类似反应已为人所知,从而得到相应的亚基磷。总之,邻醌与烷氧基-亚甲基(三苯基1)磷烷之间的反应具有重要的合成价值,因为它们可用于制备几种不同的化合物,具体取决于存在的特定试剂和应用的反应条件。实验 MP 是在 Kofler 热阶段设备上确定的,并且未经校正。使用Perkin-Elmer 297分光光度计获得红外光谱。'H NMR 谱图以氘代氯仿为溶剂,在带有 SiMe 的 Bruker AW 80 (80 MHz) 波谱仪上记录,作为内标。耦合恒数值J以Hz为单位,质谱图是在VG-250光谱仪上测定的,电离能保持在70 eV。邻醌la,lc,Id与YIide 2在TriphenyIph0sphine存在下的反应.-(a)在2小时内分批加入苯乙烷-9,lO-醌la(0.104g,0.5mmol)和三苯基-膦la(0.393g,1.5mmol)在二氯甲烷(5cm3)中的搅拌溶液中,将酰化物2(0.174g,0.5mmol)分批加入。然后将反应混合物在室温下再搅拌20小时,然后在回流下再搅拌48小时,然后冷却至漫游温度,得到3-(三苯基膦亚基)菲并[9,l0-b]呋喃-2-(3H)-酮lla(195mg,7970,熔点25Ck252“C(分解。)(来自二氯甲烷)(lit.,6 m.p. 252 “C)。(二)在3,5-二叔丁基-l,2-苯醌lc(0.22g,1mmol)和三苯基膦(0.786g,3mmol)的二氯甲烷(6cm3)中的搅拌溶液中,在4小时内分批加入酰化物2(0.348g,1mmol),并在室温下将反应混合物再搅拌24小时,然后蒸发至干。在硅胶上以二氯甲烷为洗脱液的色谱法得到三个馏分。第一次压裂得到5,7-二叔丁基-3-乙氧羰基亚甲基苯并[b]呋喃-2(3H)-酮9c(20毫克,673,熔点119-121“C(来自己烷)(lit.,3熔点119-121”C)。第二级得到6,8-二叔丁基-2-氧代-2H-苯并吡喃-4-羧酸乙酯8c(41mg,1279,熔点113-115“C(来自己烷)(lit.,3熔点113-115”C)。第三部分得到5,7-二叔丁基-3-三苯基膦-邻苯并[b]呋喃-2(3H)-酮llc(0.248克,49%)熔点247-249“C(来自甲醇)(lit.,6 m.p.249”C)。当邻醌lc(0.44g,2mmol),三苯基膦(1.572g,6mmol)和酰化物2(0.696g,2mmol)进行相同的反应时,在搅拌下立即加入二氯甲烷(1 7 cm3)中,并在室温下搅拌反应混合物48小时,然后将J. CHEM. soc. PERKIN TRANS. 1 1992浓缩至小体积, 得到化合物1LC的晶体(0.605 g,60%)。(c)向三苯基膦(0.262g,1mmol)和酰化物2(0.在2小时内分批加入348g,1mmol)的二氯甲烷(10cm3)四氯-1,2-苯醌Id(0.246g,1mmol),然后在室温下将反应混合物再搅拌24小时。溶剂蒸发后,以二氯甲烷为洗脱液,在硅胶上色谱。首先洗脱三苯基膦(34mg)。第二部分得到(3,4,5,6-四氯-2-羟基苯基1)乙酸乙酯12(0.1 16 g,3773,熔点129-131“C(二氯甲烷己烷)(lit.,3 m.p. 129-1 31”C)。第三部分得到四氯邻苯二酚13(33mg,13%),m.p.193-195“C(来自乙醇)(lit.,”m.p.194-195“C)。下一个馏分得到4,5,6,7-四氯-3-三苯基膦酰基-亚苯并[b]firran-2(3H)-one1Id(1 1 mg,2%),熔点275-277“C(来自二氯甲烷)(发现:C,58.3;H, 3.15.C26H1 ,C1402P 需要 C, 58.7;H,2.8%);v,,,(Nujol)/cm-' 1710;GH(CDC13)7.34-7.84(米);m/z 538 (M+ + 8, I(%), 536 (M+ + 6,2), 534(M+ + 4,6), 532(M+ + 2,23), 530 (M+,8) 和 165 (100).当三苯基膦(0.13 1 g,0.5 mmol)、醌Id(0.246 g,1mmol)和酰化物2(0.348 g,1 mmol)在二氯甲烷(5 cm3)中如上所述进行反应时,然后向反应混合物中加入己烷,析出化合物Ild(24 mg,4.5%)的晶体。当醌Id(62mg,0.26mmol)和三苯基膦(0.198g,0.75mmol)首先溶于二氯甲烷(2cm3)中,它们之间发生自发反应,然后加入酰化物2,生成四氯邻苯二酚13(44mg,69%)。Wittig 反应 uf Yylides 1la 和 1Id 与对硝基苯甲醛。化合物14a和14~~,~,.-(a)的制备向甲苯(17cm3)中的易拉化物Ila(0.107g,0.216mmol)溶液中加入对硝基苯甲醛(33mg,0.218mmol),并将反应混合物在回流下加热48小时。溶剂蒸发后,将残留物用二氯甲烷研磨,得到3-(4-硝基苄基亚甲基)菲并[9,1O-b]呋喃-2(3H)-酮14a(53mg,67%)的红色晶体,熔点256-258“C(来自二氯甲烷)(发现:C,74.75;N,4.1;H,3.9。C,,Hl,N04 要求 C, 75.2;N,3.8;H,3.6%);v,,,(Nujol)/cm-' 3020、1765、1595、1520 和 1345;d,(CDCl,) 7.48-7.92 (4 H, m), 7.98-8.50 (6 H, m) 和 8.64-8.94 (3 H, m);m/z 367 (M+, loo%)、339 (42)、294 (30)、293 (33)、292 (23)、265 (38) 和 263 (47)。(b)将酰化物Ilc(95mg,0.19mmol)和对硝基苯甲醛(29mg,0.19mmol)在二氯甲烷(4 cm3)中的溶液在回流下加热48小时。溶剂蒸发后,用硅胶[己烷--二氯甲烷(1:l)]上的制备型TLC分离残留物。移动速度较快的条带为5,7-二叔丁基-3-(4-硝基亚苄基)苯并[b]呋喃-2(3H)-酮14c,(27毫克,38%),熔点162-164“C(二氯甲烷己烷)(发现:C,73.15;N,3.9;H,6.35。C23H25N04要求C,72.8;N, 3.7;H,6.6%);v,,,(Nujol)/cm-' 1769年、1618年、1590年、1520年和1340年;GH(CDC1,) 1.40 (9 H, s), 1.46 (9 H, s), 7.27 (1 H, s), 7.39 (1 H, s), 7.57 (1 H, s) 和 8.17-8.38 (4 H, m);m/z 379 (M+,70%)、363 (100) 和 335 (16)。下一个条带给出另一个异构体14C11(35毫克,4973,熔点183-185“C(二氯甲烷己烷)(发现:C,73.2;N,3.3;H,6.9。C2,HZ5NO4要求C,72.8;N,3.7;H,6.6%);v,,,(Nujol)/cm-l 1779、1630、1600、1525 和 1340;GH(CDC13)1.23 (9 H, s), 1.42 (9 H, s), 7.34-7.44 (2 H, m), 7.77 (1 H, s), 7.82 (2 H, d, J7.2) 和 8.35 (2 H, d, J 7.2);m/z 379 (M', 56%), 363 (100) 和 335 (8).后来的移动带给出了对硝基苯甲醛(3mg)。3-Metho.u~~piienanthvoC9,1O-b],呋喃-2(3H)-酮 16.-向搅拌的qiiinone la(0.208 g,1 mmol)在甲醇287(10 cm3)中搅拌悬浮,回流时加入酰化物2(0.418 g,1.2 mmol)在4 h内,然后在搅拌下将反应混合物再回流20 h。然后过滤热反应混合物,得到化合物16(81mg,31%)的晶体,熔点22&222“C(分解)。(来自甲醇)(发现:C,77.1;H,4.3。C17H12O3 要求 C,77.25;H,4.6%);vm,,(Nujol)/cm-' 1815;S,(CDC13) 3.31 (3 H, s), 7.34 (1 H, s, 部分与 CHCI 重叠), 7.56-7.90 (5 H, m), 8.27-8.44 (1 H, m) 和 8.57-8.74 (2 H, m);m/z 264 (M+,4473、236 (56)、221 (loo)、220 (81) 和 205 (19)。滤液蒸发至干。以二氯甲烷-己烷(3:1)为洗脱液,在硅胶上层析,先加化合物16(35mg,13%),总收率为44%。下一个馏分得到化合物8a(0.1 12 g,35%)。乙基(33-二叔-btityl-2-氢.xyphen~~l)erho.uq~乙酸盐17.-醌lc(0.44g,2mmol)在乙醇(1 7 cm3)中的溶液中,在回流时加热,加入酰化物2(0.696g,2mmol)超过5 h,然后将反应混合物再回流24 h。 4%).滤液蒸发至干。用己烷-二氯甲烷(3:141:1)作为洗脱液,在硅胶上对残留物进行色谱分析,得到三个馏分。第一种馏分得到化合物9c(24mg,4%)。第二部分得到化合物17(35mg,573,m.p.125-127“C(来自己烷)(发现:C,71.15;H,9.9。C20H3204要求C,71.4;H,9.67;);v,,,(Nujol)/cm-' 3400 和 1735;&(CDC13) 1.25 (3 H, t, J6.4), 1.38 (3 H, t, J7.2), 3.60 (2H,q7J6.4), 4.l9(2H,q,J7.2), 5.35(1H7s), 7.27(1H,s) 和 8.68 (1 H, s);nz/z 336 (M+, 18%)、335 (66)、318 (16)、307 (35)、305 (43)、291 (17)、277 (44)、263 (38)、234 (44)、233 (99)、232 (64)、230 (60)、218 (35) 和 217 (100)。第三部分为化合物8c(0.285 g,43%)。醌la与乙酸乙酯中的Ylide 2的反应-醌la(0.104g,0.5mmol)和ylide 2(0.348g,1mmol)在乙酸乙酯(5cm3)中的溶液在室温下搅拌。通过对混合物的TLC检查来监测反应。2小时后,消耗所有起始醌。蒸去溶剂,将残留物在硅胶上色谱,以己烷-二氯甲烷(1:1)为洗脱液,得到2-氧代-2H-二苯并[f,h]色烯-4-羧酸乙酯8a(0.11g,69“,),m.p.158-1 59”C(来自乙醇)(lit.,' m.p.158“C)。醌类与乙酸酐中 Ylide 2 的反应。化合物18a、18b、18d、19b、19d和24的制备.-(a)将醌la(0.4,16g,2mmol)和ylide 2(1.392g,4mmol)在乙酸酐(5cm3)中的溶液在约60“C下加热8小时。然后将反应混合物倒入水(30 cm3)中并用乙醚(4 x 40 cm3)萃取。将提取物在Na 2 S04上干燥并蒸发至干。以己烷乙酸乙酯(9.9:0.1-+9:1)为洗脱液的硅胶色谱得到3次。第一馏分得到乙j'l 2-甲基-菲C9,lO-b],呋喃-3-carbo.~ylate 24(44 mg,773,m.p. 109-1 10“C(二氯甲烷-己烷)(Found:C,78.8;H,5.4.C20H160,需要C,78.9;H,5.3%);v,,,(Nujol)/cm-' 1705 年和 1615 年;dH(CDC13)1.47 (3 H, t, J 8.0), 2.80 (3 H, s), 4.50 (2 H, d, J8.0), 7.43-7.79 (4 H, m), 8.18-8.37 (1 H, m), 8.57-8.79 (2 H, m) 和 9.04-9.26 (1 H, m);mi2 304 (M+,1000/,)、278 (16)、277 (30)、276 (24)、275 (51)、231 (16)、230 (19)、202 (59) 和 152 (27)。第二部分为化合物8a(0.16g,25%)。第三部分得到无色晶体的diethjd(1O-aceto。xy-9-phenanthryl).funmrate 18a (0.503 g, 620/,), m.p. 70-72 “C(来自乙醇) (发现: C, 70.8;H,5.6。C24H22O6要求C,70.9;H,5.5%);v,,,(Nujol)/crn-' 1760年、1725年和1720年;SH(CDC13)0.63 (3 H, t, J8.0), 1.10 (3 H, t, J9.0), 2.35 (3 H, s), 3.81 (2 H, q, J9.0), 4.19 (2 H, q, J KO), 7.26-7.92 (6 H, m) 和 8.42-8.79 (2 H, m);nz/z 407 (15%)、406 (M', 24)、364 (loo)、318 (64) 和 290 (53)。当化合物la和2在醋酸酐中进行相同的反应时,再次得到化合物8a(5373和18a(28%)。(b)醌lb(0.158g,1mmol)和酰化物2(0.696g,2mmol)在乙酸酐(2cm3)中在60“C下反应10小时,并将反应混合物处理起来,如上所述,对于醌la,从第一馏分中得到化合物8b(23mg,973,m.p.147-148”C(氯仿-己烷)(lit.,' m.p. 148 “C)。下一个馏分给予dietlijvl(1-aceto.u~-2-napl?th~l)马来酸盐19b(83mg,23%),m.p.52-54“C(来自乙醇)(发现:C,67.3;H, 5.55.C,,H2,06 需要 C, 67.4;H,5.7%);v,,,(Nujol)/cm-' 1760 年和 1720 年;dH(CDC13)1.29(6H,t,J7.2),2.42(3H,s),4.25(2H7q,J7.2),4.34(2H7q,J7.2),6.30(1 h,s)和7.34-7.91(6 H,m);m/z 356 (M+, 7873, 312 (loo), 266 (54) and 240 (42).(c) 醌 Ic (0.44 g, 2 mmol) 和酰化物 2 (1.392 g,4 mmol)在醋酸酐(5 cm3)中,在室温下进行24小时,并将反应混合物如上所述,得到第一化合物9c(0.48g,737'J.下一个部分为化合物8c(26mg,4%)。第三部分得到酰化物25(0.302克,19%),熔点171-173“C(二氯甲烷己烷)(lit.,'lb m.p.172-1 74”C)。(d)醌Id(0.492g,2mmol)与酰化物2(1.392g,4mmol)在60“C的乙酸酐中反应30分钟,反应混合物如醌la所述。洗脱以下馏分。首先洗脱的馏分得到18d(0.29g,3373,m.p.61-63“C(来自己烷)(lit.,3 m.p.61-63”C)。下一部分为二乙基(2-乙托.x~~-3,4,5,6-四氯苯基)马来酸19d(0.21g,24%),油(Found:C,43.0;H,3.1。C16H14c1406 需要 C, 43.3;H,3.2%);v,,,(液体薄膜)/cm-' 1787、1735、1725、1640 和 1560;G,(CDCI,) 1.23 (3 H, t, J 7.0), 1.32 (3 H, t, J 7.4), 2.31 (3 H, s), 4.21 (2 H, q, J 7.0), 4.28 (2 H, q, J 7.4) 和 6.21 (1 H, s);m/z 448 (M+ + 6, 0.8%)、446 (M+ + 4, 4)、444 (M+ + 2, 9) 和 442 (M +,6)。下一个馏分得到三苯基氧化膦(0.46g,83%),下一个馏分得到酰化物25(0.425g,27%)。将化合物18a(67mg,0.165mmol)和浓盐酸(0.5cm3)在乙醇(3cm3)中的溶液转化为8a.-A,回流加热6小时。然后将反应混合物冷却至室温,得到化合物8a(52mg,99“/1)的晶体。将qf 18b混合到化合物18b(0.1,16g,0.326mmol)和浓盐酸(0.5cm3)在乙醇(3cm3)中的溶液中,在室温下静置64小时。溶剂蒸发至干。在硅胶[己烷-二氯甲烷(1:l)]上通过制备型TLC进行分离,该硅胶来自移动速度较快的带状化合物9b(6 mg,773,熔点187-189“C)(点亮,3 m.p.187-189”C)。下一个条带给出化合物 8b(51 mg,52%)。较慢的移动条带给出不变的化合物18b(39mg,34%)。将化合物1---9b(82mg,0.23mmol)和浓盐酸(0.5cm3)在乙醇(3cm3)中的溶液在室温下搅拌9 d。溶剂蒸发至干。用二氯甲烷-己烷(1:1)在硅胶上色谱得到三个馏分。第一种馏分为化合物9b(10mg,1604))。第二部分得到化合物8b(25mg,41xJ。第三级得到未反应的化合物19b(36mg,40%)。将'18d转化为化合物18d(20mg,0.045mmol)和浓盐酸(0.3cm3)在乙醇(2cm3)中的溶液,回流加热24 h,溶剂蒸发至干,得到二乙(2,3,4,5-四氯-6-J. CHEM. SOC. PERKIN TRANS.I 1992 羟基苯乙烯 1)富马酸盐 6d (18 mg, 10O0.), m.p. 76-78 C (乙酸乙酯-己烷) (lit.,3 m.p.76 -78 -C)。将化合物8a(0.3 18g,1mmol)和酰化物2(0.348g,1mmol)在甲苯(5cm3)中的溶液回流加热3 d。溶剂在旋转蒸发器中蒸发至干。用乙酸乙酯-己烷(1:2)在硅胶上色谱得到化合物26(0.186克,48%),熔点140-1 4 1“C(来自乙醇)(发现:C,74.1;H,5.3。C24H2005 要求 C,74.2;H,5.2%);v,,,(Nujol)/cm-' 1735年、1730年、1680年、1630年和1600年;d~(cDC13) 1.25 (3 H, t, J9.0), 1.49 (3 H, t, J9.0), 4.28 (2 H, q, J9.0), 4.60(2H,q, J9.0), 5.56(1 H7s), 7.40-7.93(6H,m)和8.16-8.64 (3 H, m);rn/z 389 (25%)、388 (M', 92)、343 (19)、316 (89)、288 (18) 和 214 (100)。下一个馏分得到未反应的化合物8a(99mg,3 1%)。将化合物26(78mg,0.2mmol)和三苯基膦(0.131g,0.5mmol)在甲苯(5cm3)中的溶液回流加热48小时。将溶剂蒸发至干。以己烷-二氯甲烷(I:1)为洗脱液的硅胶色谱得到化合物28(14mg,18%),熔点70-72“C(来自乙醇)(发现:C,73.3;H,6.3。C24H240,要求 C,73.45;H,6.2%);v,,,(Nujol)/cm-' 1740年、1730年和1625年;dH(CDC1,) 1.02-1.87 (6 H, m), 2.20-2.84 (4 H, m), 3.5W.15 (6 H, m), 7.05-7.82 (5 H, m) 和 8.40-8.72 (3 H, m);m/z 392 (M', 56%), 320 (48) 和 248 (100).(b)向搅拌的醌la(0.208g,1mmol)和香豆素29(0.73g,5mmol)的熔融混合物中,在70'C下加热,在2小时内分批加入酰化物2(0.522g,1.5mmol)。反应混合物在硅胶上通过柱层析分离。用己烷-乙酸乙酯(9:1)洗脱得到三个馏分。第一种馏分得到化合物28(47mg,12:9。第二组分得到香豆素29(0.701克,96%),第三组分得到化合物8a(0.149克,47%)。将香豆素29(0.292g,2mmol)和ylide 2(0.696g,2mmol)的混合物在CCI.115“C的油浴中加热48小时,然后在硅胶上用己烷+乙酸乙酯(2:1)作为洗脱液,在硅胶上色谱得到化合物30(0.151g,3573, m.p. 75-76 'C (来自乙醇) (发现: C, 72.3;H,5.6。C13H1203 要求 C,72.2;高,5.6 英寸/,);vmax(Nujol)/cm-l 1695sh、1680 和 1600;h~(cDC13) 1.27 (3 H, t, J9.0), 4.16 (2 H, 9, J9.0), 5.38 (1 H, s), 6.88-7.36 (5 H, m) 和 7.83 (1 H, d, J 14);m/z 216 (M', 40°/;,), 171 (87) 和 114 (100)。参考文献 I H. J. Bestmann 和 H. J. Lang, Tctrdirciron Lett., 1969, 2101.2 F. M. Soliman, K. M. Khalil 和 G. Abdelnaim, Pho.sp1ioru.sSulfiri.Rcltrt. Eh., 1988,35, 41.3 D.N.尼古拉德斯、S.G.阿达莫普洛斯、D.A.莱夫卡迪斯和K.E.利蒂纳斯。J.切尼。Soc., Pdiitl Trm.7.我, 1990,2 127.4 D.N.尼古拉德斯、D.A.莱夫卡迪斯、P.S.利亚尼斯和K.E.利蒂纳斯。J. Clieni.Sot., Prrkiri 7'ruii.v.我,1989,2329。5 J. Brugidou 和 H.克里斯托尔,公牛。Soc. Chirii.Fr., 1966, 2688;R. R. Schmidt, Tetr([hcdroti Lett., 1969, 5279; T. Inoue, S. Inoue 和 K. Sato, Choji.L~tt.,1989, 653.6 R.W.萨尔弗兰克、E.阿克曼、H.温克勒。W. Paul 和 R. Bohme。Clicwi.Bcr., 1980, 113, 2950.7 J.W.凯利、P.L.罗宾逊和S.A.埃文斯。Jr., J. Org. c'licrii., 1986, 51,4473.8 ((1) K. Sunitha 和 K. K. Balasubramanian, Tc~trrrlic~tlrwii.1987.43. 3269;(h) L.T.伯恩。L. M. Engelhardt, F. R. Hewgill 和 B. W. Skelton, J. C'licvii.Soc..Pcrkiri Tr~ui.\.I. 1989.133. 9 V. 0.Kozminykh, E. N. Kozminykh 和 Yu.S.安德烈奇科夫,克利伊。GctcrwtsiX.1. Soctiiii, 1989, 8, 1034.10 D. A. Bolon, J. Org. Clicwi., 1970, 35.3666;B. A. M. Oude-Alink, J. CHEM. SOC. PERKIN TRANS. 1 1992 A. W. K. Chan and C. D. Gutsche, J. Org. Chem., 1973.38, 1993;L. Jurd 和 R. Y. Wong, Aust. J. Chem., 1981,34, 1645.11 (a)A. W. Johnson, YIid Chemistry, ed. A. T. Blomquist, Academic Press, London 1966, pp. 102-106;(6) P. A. Chopard, R.J. G. Searle 和 F. H. Devitt, J. Org. Chem., 1965.30, 1015.12 W. G. Dauben 和 D. J. Hart,《左四面体》,1975 年,第 4353 页;W. Ding, P. Zhang and W. Cao, Tetrahedron Lett., 1987,28,81.13 M. von Strandtmann, M. P. Cohen, C. Puchalski and J. Shave1 Jr., J. Org. Chem., 1968,33,4306.14 I. Gosney 和 A. G. Rowley, Organophosphorus Reagents in Orgunic Sj*nfhesis, ed. J. I. Cadogan, Academic Press, London 1979, p. 22.15 M. S. Chauhan, F. M. Dean, D. Matkin 和 M. L. Robinson, J. Chem. Soc., Perkin Trans.1, 1973, 120.16 C. A. Henrick, E. Bohme, J. A. Edwards and J. H. Fzied, J. Am. Chem. Soc., 1968, 90, 5926;H. Kise, Y. Ardse, S. Shiraishi, M. Seno 和 T. Asahara, J. Chem. SOC.,Chem. Commun., 1976, 299;J. Le Roux 和 M. Le Corre, J. Chem. SOC.,Chem. Commun., 1989, 1464.I7 E. Hedaya 和 S. Theodoropoulos,四面体,1968,24,2241。18 T. Zincke 和 F. Kuster,Chem. Ber.,1888,21,2719。论文 1 /03700E 收稿日期 1991 年 7 月 19 日 录用日期 199 年 10 月 2 日 1

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号