首页> 外文期刊>Modelling and simulation in materials science and engineering >Atomic configurations and energies of Mg symmetric tilt grain boundaries: ab initio local analysis
【24h】

Atomic configurations and energies of Mg symmetric tilt grain boundaries: ab initio local analysis

机译:Atomic configurations and energies of Mg symmetric tilt grain boundaries: ab initio local analysis

获取原文
获取原文并翻译 | 示例
           

摘要

Mg alloys are highly expected for the wide application in the next-generation industry, while significant improvement of the plasticity of polycrystalline Mg alloys is crucial. For this purpose, it is essential to get insights into the atomic configurations, energetics, and mechanical responses of Mg grain boundaries (GBs). In this study, we investigated the overall features of atomic configurations and energies of and symmetric tilt GBs in hcp Mg by density-functional theory. We systematically constructed atomic models of coincidence-site lattice GBs by the arrangement of structural units in the full range of rotation angles. We observed that special GBs show clear cusps in both the GB-energy and excess-volume curves against the rotation angle. The reason of the stability/instability of each GB configuration was analyzed by ab initio local energy and local stress based on Bader partitioning. The features of local energies and stresses in Mg GBs are quite different from those in other materials with covalent or partial-covalent bonding nature. We observed substantial variations of local energies, local stresses and Bader charges of GB atoms, and charge inhomogeneity in a GB region, reflecting the structural disorder. Stable GBs are characterized by modest ranges of such variations and by moderate charge homogeneity. These results could be utilized in general to understand the interface stability and deformation mechanism of Mg and other simple metals.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号