...
首页> 外文期刊>Journal of scientific computing >Bernstein-Bézier Galerkin-Characteristics Finite Element Method for Convection-Diffusion Problems
【24h】

Bernstein-Bézier Galerkin-Characteristics Finite Element Method for Convection-Diffusion Problems

机译:Bernstein-Bézier Galerkin-Characteristics Finite Element Method for Convection-Diffusion Problems

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Abstract A class of Bernstein-Bézier basis based high-order finite element methods is developed for the Galerkin-characteristics solution of convection-diffusion problems. The Galerkin-characteristics formulation is derived using a semi-Lagrangian discretization of the total derivative in the considered problems. The spatial discretization is performed using the finite element method on unstructured meshes. The Lagrangian interpretation in this approach greatly reduces the time truncation errors in the Eulerian methods. To achieve high-order accuracy in the Galerkin-characteristics solver, the semi-Lagrangian method requires high-order interpolating procedures. In the present work, this step is carried out using the Bernstein-Bézier basis functions to evaluate the solution at the departure points. Triangular Bernstein-Bézier patches are constructed in a simple and inherent manner over finite elements along the characteristics. An efficient preconditioned conjugate gradient solver is used for the linear systems of algebraic equations. Several numerical examples including advection-diffusion equations with known analytical solutions and the viscous Burgers problem are considered to illustrate the accuracy, robustness and performance of the proposed approach. The computed results support our expectations for a stable and highly accurate Bernstein-Bézier Galerkin-characteristics finite element method for convection-diffusion problems.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号