...
首页> 外文期刊>Computational statistics >An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso
【24h】

An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso

机译:An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso

获取原文
获取原文并翻译 | 示例

摘要

The sparse precision matrix plays an essential role in the Gaussian graphical model since a zero off-diagonal element indicates conditional independence of the corresponding two variables given others. In the Gaussian graphical model, many methods have been proposed, and their theoretical properties are given as well. Among these, the sparse precision matrix estimation via scaled lasso (SPMESL) has an attractive feature in which the penalty level is automatically set to achieve the optimal convergence rate under the sparsity and invertibility conditions. Conversely, other methods need to be used in searching for the optimal tuning parameter. Despite such an advantage, the SPMESL has not been widely used due to its expensive computational cost. In this paper, we develop a GPU-parallel coordinate descent (CD) algorithm for the SPMESL and numerically show that the proposed algorithm is much faster than the least angle regression (LARS) tailored to the SPMESL. Several comprehensive numerical studies are conducted to investigate the scalability of the proposed algorithm and the estimation performance of the SPMESL. The results show that the SPMESL has the lowest false discovery rate for all cases and the best performance in the case where the level of the sparsity of the columns is high.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号