...
首页> 外文期刊>International Journal of Information Security >DAPP: automatic detection and analysis of prototype pollution vulnerability in Node.js modules
【24h】

DAPP: automatic detection and analysis of prototype pollution vulnerability in Node.js modules

机译:DAPP: automatic detection and analysis of prototype pollution vulnerability in Node.js modules

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Abstract The safe maintenance of Node.js modules is critical in the software security industry. Most server-side web applications are built on Node.js, an environment that is highly dependent on modules. However, there is clear lack of research on Node.js module security. This study focuses particularly on prototype pollution vulnerability, which is an emerging security vulnerability type that has also not been studied widely. To this point, the main goal of this paper is to propose patterns that can identify prototype pollution vulnerabilities. We developed an automatic static analysis tool called DAPP, which targets all the real-world modules registered in the Node Package Manager. DAPP can discover the proposed patterns in each Node.js module in a matter of a few seconds, and it mainly performs and integrates a static analysis based on abstract syntax tree and control flow graph. This study suggests an improved and efficient analysis methodology. We conducted multiple empirical tests to evaluate and compare our state-of-the-art methodology with previous analysis tools, and we found that our tool is exhaustive and works well with modern JavaScript syntax. To this end, our research demonstrates how DAPP found over 37 previously undiscovered prototype pollution vulnerabilities among 30,000 of the most downloaded Node.js modules. To evaluate DAPP, we expanded the experiment and ran our tool on 100,000 Node.js modules. The evaluation results show a high level of performance for DAPP along with the root causes for false positives and false negatives. Finally, we reported the 37 vulnerabilities, respectively, and obtained 24 CVE IDs mostly with 9.8 CVSS scores.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号