...
首页> 外文期刊>Nature chemical biology >CRISPR-Cas12a-mediated DNA clamping triggers target-strand cleavage
【24h】

CRISPR-Cas12a-mediated DNA clamping triggers target-strand cleavage

机译:CRISPR-Cas12a-mediated DNA clamping triggers target-strand cleavage

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a is widely used for genome editing and diagnostics, so it is important to understand how RNA-guided DNA recognition activates the cleavage of the target strand (TS) following non-target-strand (NTS) cleavage. Here we used single-molecule magnetic tweezers, gel-based assays and nanopore sequencing to explore DNA unwinding and cleavage. In addition to dynamic and heterogenous R-loop formation, we also directly observed transient double-stranded DNA unwinding downstream of the 20-bp heteroduplex and, following NTS cleavage, formation of a hyperstable 'clamped' Cas12a-DNA intermediate necessary for TS cleavage. Annealing of a 4-nucleotide 3' CRISPR RNA overhang to the unwound TS downstream of the heteroduplex inhibited clamping and slowed TS cleavage by similar to 16-fold. Alanine substitution of a conserved aromatic amino acid in the REC2 subdomain that normally caps the R-loop relieved this inhibition but favoured stabilisation of unwound states, suggesting that the REC2 subdomain regulates access of the 3' CRISPR RNA to downstream DNA.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号