...
首页> 外文期刊>Combustion and Flame >Efficient premixed turbulent combustion simulations using flamelet manifold neural networks: A priori and a posteriori assessment
【24h】

Efficient premixed turbulent combustion simulations using flamelet manifold neural networks: A priori and a posteriori assessment

机译:Efficient premixed turbulent combustion simulations using flamelet manifold neural networks: A priori and a posteriori assessment

获取原文
获取原文并翻译 | 示例
           

摘要

Flamelet-based reduced manifold tabulation is very useful to save computing time compared to simulations of turbulent flames with detailed kinetics. However, conventional tabulation techniques based on high-dimensional look-up tables (LUT) soon lead to tremendous memory costs. As an alternative, artificial neural networks (ANN) can be used to reduce the storage. However, it is usually difficult to obtain an ANN model that can accurately describe a high-dimensional thermochemical space. Therefore, in the present study, Flamelet Manifold Neural Networks (FMNN) are introduced to achieve sufficient accuracy by constraining the solution space to physical configurations during the sampling and training process. Different from the standard ANN, FMNN involves flame front weighting information in the sampling process and 3 different physical constraints/implications in the loss function. The FMNN models have been trained for both flames with unity Lewis number diffusion (ULD) or mixture-averaged diffusion (MAD). A priori and a posteriori assessments of the FMNN have been done, to compare with the standard ANN and conventional LUT regarding accuracy, memory storage and retrieval time. Each key component of the FMNN has been verified to enhance the model accuracy. The resulting FMNN architecture is flexible and its novel components could also be combined with other machine learning techniques (such as Residual Neural Networks or Convolutional Neural Networks) for combustion models. The final FMNN models are validated using direct numerical simulations (DNS) of turbulent flames, resulting in relative errors less than 2, very low storage requirements, and a speed-up of the computations by a factor of 4 and more.(c) 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号