首页> 外文期刊>Journal of Applied Physics >Eulerian peridynamic modeling of microjetting from a grooved aluminum sample under shock loading
【24h】

Eulerian peridynamic modeling of microjetting from a grooved aluminum sample under shock loading

机译:冲击载荷下沟槽铝样品微喷射的欧拉近场动力学建模

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The micro jetting from a grooved aluminum surface under impact loading is investigated by using Eulerian peridynamics (PD). The simulation results are compared with the published experimental data and the spike velocity model, exhibiting qualitative agreement. The governing mechanism accounting for the formation of micro jetting is elucidated from the perspective of the shock wave interaction with the surface groove. The PD simulation results indicate that the incident shock wave induces progressive groove collapse along the direction of shock wave propagation. The rarefaction waves reflected from the groove edges cause the variation of the velocity vector of PD material points, leading to the material points above and below the symmetric axis of the groove converging toward the symmetric axis and colliding with each other. Then, those collided material points are driven by the incident shock wave propagating along the horizontal symmetric axis and eventually ejected from the groove. The effects of the groove dimensions and the impact velocity on the spike velocity and the ejected mass are discussed. The results show that spike velocity decreases with an increasing groove angle but increases with increasing impact velocity. Furthermore, the ejected mass increases with increasing impact velocity. However, when the depth of the surface groove is fixed and the groove angle increases, the ejected mass first increases and then decreases with the turning point at similar to 120 degrees. As the depth of the surface groove increases, the ejected mass increases. The simulation results provide a mechanistic understanding of the micro jetting phenomena and instructive guidance for developing better ejecta models. Published under an exclusive license by AIP Publishing.
机译:利用欧拉近场动力学(PD)研究了冲击载荷作用下铝表面的微射流。仿真结果与已发表的实验数据和尖峰速度模型进行了对比,结果在质量上是一致的。从激波与表面沟槽相互作用的角度阐明了微喷射形成的控制机理。局部放电模拟结果表明,入射冲击波沿冲击波传播方向诱导渐进式沟槽塌陷。从凹槽边缘反射的稀疏波引起PD材料点速度矢量的变化,导致凹槽对称轴上方和下方的材料点向对称轴收敛并相互碰撞。然后,这些碰撞的材料点由沿水平对称轴传播的入射冲击波驱动,并最终从凹槽中弹出。讨论了凹槽尺寸和冲击速度对尖峰速度和弹出质量的影响。结果表明:尖峰速度随槽角的增大而减小,随冲击速度的增加而增大;此外,弹出的质量随着冲击速度的增加而增加。然而,当表面凹槽深度固定且凹槽角度增大时,弹出的质量在类似于120度时随转折点先增大后减小。随着表面凹槽深度的增加,弹出的质量增加。仿真结果为微喷射现象提供了机理理解,并为开发更好的喷射模型提供了指导。在 AIP Publishing 的独家许可下发布。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号