...
首页> 外文期刊>Medical Physics >Fiducial marker recovery and detection from severely truncated data in navigation‐assisted spine surgery
【24h】

Fiducial marker recovery and detection from severely truncated data in navigation‐assisted spine surgery

机译:导航辅助脊柱手术中严重截断数据的基准标记恢复和检测

获取原文
获取原文并翻译 | 示例

摘要

Abstract Purpose Fiducial markers are commonly used in navigation‐assisted minimally invasive spine surgery and they help transfer image coordinates into real‐world coordinates. In practice, these markers might be located outside the field‐of‐view (FOV) of C‐arm cone‐beam computed tomography (CBCT) systems used in intraoperative surgeries, due to the limited detector sizes. As a consequence, reconstructed markers in CBCT volumes suffer from artifacts and have distorted shapes, which sets an obstacle for?navigation. Methods In this work, we propose two fiducial marker detection methods: direct detection from distorted markers (direct method) and detection after marker recovery (recovery method). For direct detection from distorted markers in reconstructed volumes, an efficient automatic marker detection method using two neural networks and a conventional circle detection algorithm is proposed. For marker recovery, a task‐specific data preparation strategy is proposed to recover markers from severely truncated data. Afterwards, a conventional marker detection algorithm is applied for position detection. The networks in both methods are trained based on simulated data. For the direct method, 6800 images and 10?000 images are generated, respectively, to train the U‐Net and ResNet50. For the recovery method, the training set includes 1360 images for FBPConvNet and Pix2pixGAN. The simulated data set with 166 markers and four cadaver cases with real fiducials are used for?evaluation. Results The two methods are evaluated on simulated data and real cadaver data. The direct method achieves 100 detection rates within 1?mm detection error on simulated data with normal truncation and simulated data with heavier noise, but only detect 94.6 markers in extremely severe truncation case. The recovery method detects all the markers successfully in three test data sets and around 95 markers are detected within 0.5?mm error. For real cadaver data, both methods achieve 100 marker detection rates with mean registration error below 0.2?mm. Conclusions Our experiments demonstrate that the direct method is capable of detecting distorted markers accurately and the recovery method with the task‐specific data preparation strategy has high robustness and generalizability on various data sets. The task‐specific data preparation is able to reconstruct structures of interest outside the FOV from severely truncated data better than conventional data?preparation.
机译:摘要 目的 基准标记通常用于导航辅助的微创脊柱手术,它们有助于将图像坐标转换为真实坐标。在实践中,由于探测器尺寸有限,这些标记可能位于术中手术中使用的 C 臂锥形束计算机断层扫描 (CBCT) 系统的视野 (FOV) 之外。因此,CBCT体积中重建的标记物存在伪影和扭曲的形状,这为导航设置了障碍。方法 提出两种基准点标记检测方法:畸变标记的直接检测方法(直接法)和标记恢复后的检测方法(恢复法)。针对重构体积中畸变标记的直接检测问题,该文提出一种利用两个神经网络和常规圆圈检测算法的高效自动标记检测方法。对于标记恢复,提出了一种特定于任务的数据准备策略,以从严重截断的数据中恢复标记。然后,采用常规的标记检测算法进行位置检测。两种方法中的网络都是基于模拟数据进行训练的。对于直接方法,分别生成了6800张图像和10?000张图像来训练U-Net和ResNet50。对于恢复方法,训练集包括 FBPConvNet 和 Pix2pixGAN 的 1360 张图像。使用具有 166 个标记和 4 个具有真实基准点的尸体案例的模拟数据集进行评估。结果 在模拟数据和真实尸体数据上对两种方法进行了评价。直接方法在正常截断的模拟数据和噪声较大的模拟数据上,检测误差在1?mm以内,检测率达到100%,但在截断极严重的情况下,仅能检测到94.6%的标记。恢复方法在三个测试数据集中成功检测出所有标记物,约95%的标记物在0.5?mm误差范围内被检测到。对于真实的尸体数据,两种方法均能达到100%的标记检出率,平均配准误差均低于0.2?mm。 结论 我们的实验表明,直接方法能够准确检测失真的标记物,并且具有特定任务数据准备策略的恢复方法在各种数据集上具有较高的鲁棒性和泛化性。与传统数据准备相比,特定任务的数据准备能够更好地从严重截断的数据中重建 FOV 之外的感兴趣结构。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号