首页> 外文期刊>Physical biology >Rate-dependent force-extension models for single-molecule force spectroscopy experiments
【24h】

Rate-dependent force-extension models for single-molecule force spectroscopy experiments

机译:Rate-dependent force-extension models for single-molecule force spectroscopy experiments

获取原文
获取原文并翻译 | 示例
       

摘要

Single-molecule force spectroscopy techniques allow for the measurement of several static and dynamic features of macromolecules of biological origin. In particular, atomic force microscopy, used with a variable pulling rate, provides valuable information on the folding/unfolding dynamics of proteins. We propose here two different models able to describe the out-of-equilibrium statistical mechanics of a chain composed of bistable units. These latter represent the protein domains, which can be either folded or unfolded. Both models are based on the Langevin approach and their implementation allows for investigating the effect of the pulling rate and of the device intrinsic elasticity on the chain unfolding response. The theoretical results (both analytical and numerical) have been compared with experimental data concerning the unfolding of the titin and filamin proteins, eventually obtaining a good agreement over a large range of the pulling rates.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号