...
首页> 外文期刊>Global change biology >Global patterns of soil gross immobilization of ammonium and nitrate in terrestrial ecosystems
【24h】

Global patterns of soil gross immobilization of ammonium and nitrate in terrestrial ecosystems

机译:陆地生态系统中铵态氮和硝态氮土壤总固定化的全球格局

获取原文
获取原文并翻译 | 示例

摘要

Microbial nitrogen (N) immobilization, which typically results in soil N retention but based on the balance of gross N immobilization over gross N production, affects the fate of the anthropogenic reactive N. However, global patterns and drivers of soil gross immobilization of ammonium (I-NH4) and nitrate (I-NO3) are still only tentatively known. Here, we provide a comprehensive analysis considering gross N production rates, soil properties, and climate and their interactions for a deeper understanding of the patterns and drivers of I-NH4 and I-NO3. By compiling and analyzing 1966 observations from 274 N-15-labelled studies, we found a global average of I-NH4 and I-NO3 of 7.41 +/- 0.72 and 2.03 +/- 0.30 mg N kg(-1) day(-1) with a ratio of I-NO3 to I-NH4 (I-NO3:I-NH4) of 0.79 +/- 0.11. Soil I-NH4 and I-NO3 increased with increasing soil gross N mineralization (GNM) and nitrification (GN), microbial biomass, organic carbon, and total N and decreasing soil bulk density. Our analysis revealed that GNM and GN were the main stimulators for I-NH4 and I-NO3, respectively. The structural equation modeling showed that higher soil microbial biomass, total N, pH, and precipitation stimulate I-NH4 and I-NO3 through enhancing GNM and GN. However, higher temperature and soil bulk density suppress I-NH4 and I-NO3 by reducing microbial biomass and total N. Soil I-NH4 varied with terrestrial ecosystems, being greater in grasslands and forests, which have higher rates of GNM, than in croplands. The highest I-NO3:I-NH4 was observed in croplands, which had higher rates of GN. The global average of GN to I-NH4 was 2.86 +/- 0.31, manifesting a high potential risk of N loss. We highlight that anthropogenic activities that influence soil properties and gross N production rates likely interact with future climate changes and land uses to affect soil N immobilization and, eventually, the fate of the anthropogenic reactive N.
机译:微生物氮 (N) 固定化通常会导致土壤氮保留,但基于总氮固定与总氮产量的平衡,会影响人为反应性氮的命运。然而,铵(I-NH4)和硝酸盐(I-NO3)土壤总固定的全球模式和驱动因素仍然只是初步了解。在这里,我们提供了全面的分析,考虑了总氮产量、土壤特性和气候及其相互作用,以更深入地了解 I-NH4 和 I-NO3 的模式和驱动因素。通过汇编和分析 1966 年 274 项 N-15 标记研究的观察结果,我们发现 I-NH4 和 I-NO3 的全球平均值为 7.41 +/- 0.72 和 2.03 +/- 0.30 mg N kg(-1) 天 (-1),I-NO3 与 I-NH4 (I-NO3:I-NH4) 的比率为 0.79 +/- 0.11。土壤I-NH4和I-NO3随土壤总氮矿化(GNM)和硝化作用(GN)、微生物生物量、有机碳和全氮的增加以及土壤容重的降低而增加。我们的分析表明,GNM和GN分别是I-NH4和I-NO3的主要刺激因子。结构方程模型表明,较高的土壤微生物生物量、全氮、pH和降水量通过增强GNM和GN对I-NH4和I-NO3的刺激作用。然而,较高的温度和土壤容重通过减少微生物生物量和总氮来抑制I-NH4和I-NO3,土壤I-NH4随陆地生态系统的变化而变化,在GNM率较高的草地和森林中比在农田中更大。I-NO3:I-NH4在农田中最高,农田的氮化率较高。GN与I-NH4的全球平均值为2.86 +/- 0.31,显示出氮损失的高潜在风险。我们强调,影响土壤性质和总氮产量的人为活动可能与未来的气候变化和土地利用相互作用,从而影响土壤氮的固定化,并最终影响人为反应性氮的命运。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号