首页> 外文期刊>Environmental toxicology and chemistry / >Transcriptomic Points of Departure Calculated from Rainbow Trout Gill, Liver, and Gut Cell Lines Exposed to Methylmercury and Fluoxetine
【24h】

Transcriptomic Points of Departure Calculated from Rainbow Trout Gill, Liver, and Gut Cell Lines Exposed to Methylmercury and Fluoxetine

机译:Transcriptomic Points of Departure Calculated from Rainbow Trout Gill, Liver, and Gut Cell Lines Exposed to Methylmercury and Fluoxetine

获取原文
获取原文并翻译 | 示例
       

摘要

Ethical and resource limitation concerns are pushing chemicals management to develop alternatives to animal testing strategies. The objective of our study was to determine whether transcriptomic point of departure (tPOD) values could be derived from studies that followed Organisation for Economic Co-operation and Development (OECD) Test No. 249 (rainbow trout gill cell line), as well as from studies on trout liver and gut cells. Gill, liver, and gut cell lines were exposed to methylmercury and fluoxetine. Concentrations causing 50 cytotoxicity (LC50) were derived, the whole transcriptome was sequenced, and gene tPOD and pathway benchmark dose (BMD) values were derived from transcriptomic dose-response analysis. Differences in LC50 and transcriptomic responses across the cell lines were noted. For methylmercury, the tPOD(mode) values were 14.5, 20.5, and 17.8 ppb for the gill, liver, and gut cells, respectively. The most sensitive pathway (pathway BMDs in parentheses) was ferroptosis in the gill (3.1 ppb) and liver (3.5 ppb), and glutathione metabolism in the gut (6.6 ppb). For fluoxetine, the tPOD(mode) values were 109.4, 108.4, and 97.4 ppb for the gill, liver, and gut cells, respectively. The most sensitive pathway was neurotrophin signaling in the gill (147 ppb) and dopaminergic signaling in the gut (86.3 ppb). For both chemicals, the gene tPOD and pathway BMD values were lower than cytotoxic concentrations in vitro, and within 10-fold below the in vivo LC50s. By bringing together transcriptomics and dose-response analysis with an OECD test method in three cell lines, the results help to establish an in vitro method yielding tPOD values that are hypothesized to be protective of in vivo concentrations associated with adverse outcomes, and also give insights into mechanisms of action. Environ Toxicol Chem 2022;00:1-11. (c) 2022 SETAC

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号