首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >Accelerating the distance-minimizing method for data-driven elasticity with adaptive hyperparameters
【24h】

Accelerating the distance-minimizing method for data-driven elasticity with adaptive hyperparameters

机译:Accelerating the distance-minimizing method for data-driven elasticity with adaptive hyperparameters

获取原文
获取原文并翻译 | 示例
           

摘要

Data-driven constitutive modeling in continuum mechanics assumes that abundant material data are available and can effectively replace the constitutive law. To this end, Kirchdoerfer and Ortiz proposed an approach, which is often referred to as the distance-minimizing method. This method contains hyperparameters whose role remains poorly understood to date. Herein, we demonstrate that choosing these hyperparameters equal to the tangent of the constitutive manifold underlying the available material data can substantially reduce the computational cost and improve the accuracy of the distance-minimizing method. As the tangent of the constitutive manifold is typically not known in a data-driven setting, and as it can also change during an iterative solution process, we propose an adaptive strategy that continuously updates the hyperparameters on the basis of an approximate tangent of the hidden constitutive manifold. By several numerical examples we demonstrate that this strategy can substantially reduce the computational cost and at the same time also improve the accuracy of the distance-minimizing method.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号