...
首页> 外文期刊>International journal of hydrogen energy >Experimental and numerical studies on detonation failure and re-initiation behind a half-cylinder
【24h】

Experimental and numerical studies on detonation failure and re-initiation behind a half-cylinder

机译:Experimental and numerical studies on detonation failure and re-initiation behind a half-cylinder

获取原文
获取原文并翻译 | 示例

摘要

Mach reflection causes the re-initiation of decoupled detonation owing to changes in the boundary. A complementary series of experiments and numerical simulations, illustrating detonation failure and subsequent reinitiation processes, have been presented. Immediately across the half-cylinder, the decoupled detonation owing to the diffraction effect wave is reflected on the bottom wall to form a regular reflection, and then changes into the Mach reflection, which further determines the detonation reinitiation. Two different reinitiation modes after detonation wave diffraction were observed for the stable mixtures: the direct Mach reflection re-initiation mode and Mach reflection combined with the transverse detonation. However, for unstable detonations, a different reinitiation mode was obtained, whereby the development of intrinsic instabilities resonates with the reflection on the bottom wall, rendering the Mach reflection randomly occurring or even absent. The critical limit of detonation failure is characterized by the radius of the half cylinder and the cell size. In addition, the transition length from regular to Mach reflection was measured to reveal the length-scale effect on the process.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号