...
首页> 外文期刊>ISIJ International >Effects of Entrained Slag Droplets on Slag-Metal Interface in A Gas-Stirred Ladle
【24h】

Effects of Entrained Slag Droplets on Slag-Metal Interface in A Gas-Stirred Ladle

机译:Effects of Entrained Slag Droplets on Slag-Metal Interface in A Gas-Stirred Ladle

获取原文
获取原文并翻译 | 示例
           

摘要

This study explores the underlying mechanism between secondary refining efficiency, gas flow rate, and slag properties. The secondary refining efficiency is directly affected by the slag-metal interface area. Traditionally, the slag-metal interface has been limited to the liquid-liquid interface of the ladle crosssection and does not include the interface area between the entrained slag droplets and metal. To investigate the interface area with different slags and metals under various bottom blow rates, a physical model of a single-nozzle gas-stirred ladle was established using oil to simulate slag and water to simulate metal. The roles of relevant variables that affect the volume of entrained oil, the diameter of entrained droplets, and interface area were studied, as well as oil viscosity, interfacial tension, and oil thickness. Experimental data were collected using colorants and image processing techniques. Based on these findings, the increase in gas flow rate and oil layer thickness increased the volume of entrained oil and interface area, while the increase in oil viscosity and interfacial tension decreased these parameters. When the gas flow rate increased, the mean diameter of droplets first increased and then decreased. However, the specific surface area of droplets revealed the opposite trend. Furthermore, the mean diameter and specific surface area increased and decreased with increasing oil-layer thickness.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号