...
首页> 外文期刊>Journal of Applied Physics >Constraining the release of Sn to the ambient melting point following shock loading using time-resolved x-ray diffraction
【24h】

Constraining the release of Sn to the ambient melting point following shock loading using time-resolved x-ray diffraction

机译:Constraining the release of Sn to the ambient melting point following shock loading using time-resolved x-ray diffraction

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The formation of liquid following release from a shocked state governs the transition from spall to cavitation and the formation of ejecta in metals. In order to build physics-based models of these processes, it is necessary to critically evaluate the relative importance of kinetics and entropy generation during the release along with the accuracy of multiphase equations of state. Tin (Sn) has served as a testbed for a variety of experiments examining strength and ejecta due to its accessible melt boundary and solid-solid phase transitions. This work presents experiments examining the phase evolution of high purity Sn following the shock and release to ambient stress near the melting point. Sn is found to release to states between its ambient solidus and liquidus from approximately 19 to 33 GPa under uniaxial loading, with the two-phase region being characterized by a reduction in the intensity of the (220), (211) beta-Sn doublet. Jetting experiments performed at 27-28 GPa exhibit comparable diffraction patterns with what is observed following the uniaxial release. The solid fractions of beta-Sn in the ambient mixed phase region are found to decrease linearly with increasing shock stress as increasing liquid Sn is formed. The results provide much needed information for interpreting measurements of dynamic strength at a high strain rate and experiments examining cavitation and shallow bubble collapse in Sn. Published under an exclusive license by AIP Publishing.

著录项

  • 来源
    《Journal of Applied Physics》 |2022年第24期|245107-1-245107-11|共11页
  • 作者

    Beason M. T.; Jensen B. J.;

  • 作者单位

    Alamos Natl Lab;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 应用物理学;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号