首页> 外文期刊>Journal of Applied Physics >Electromagnetic enhanced ignition of octogen explosive at subnormal temperatures: A numerical study
【24h】

Electromagnetic enhanced ignition of octogen explosive at subnormal temperatures: A numerical study

机译:亚常温下八元炸药的电磁增强点火:数值研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The thermal decomposition and ignition of high-performance high explosives occur via a mechanism where the solid phase sublimes and the parent molecules decompose rapidly in the gas phase to form unstable and charged intermediates. These intermediates continue to react and form the final products to release energy and do work. We have observed that the presence of electromagnetic energy significantly reduces the ignition temperature of a common high explosive, and data suggest that this occurs via electromagnetic interactions with the charged gas-phase intermediates. Here, we modified the thermal decomposition kinetic expressions for octogen (High Melt eXplosive, HMX) to couple the effects of an incident microwave (MW) field. This modified kinetic model is used to investigate our previous experimental work which showed that the surface temperature at ignition of HMX powder is reduced by the MW field. The Fridman-Macheret alpha-model is a common approach in plasma chemistry and was incorporated into the Henson/Smilowitz HMX kinetics; this effectively reduces the activation energy (E-a) by vibronically excited charged reactive intermediates. A modified kinetic model was implemented into the COMSOL Multiphysics Software. The thermal time to ignition was validated; as a result, plasma formation reduced the surface temperature by similar to 23 degrees C compared to thermal ignition. With a validated kinetic model that can simulate both pure thermal ignition and mixed thermal/plasma ignition, we are able to simulate our previous experimental work showing that plasma ignition reduces the surface temperature at ignition compared to thermal initiation.
机译:高性能炸药的热分解和点火是通过固相升华和母分子在气相中迅速分解形成不稳定和带电的中间体的机制发生的。这些中间体继续反应并形成最终产物以释放能量并发挥作用。我们观察到,电磁能的存在会显着降低普通烈性炸药的点火温度,数据表明这是通过与带电气相中间体的电磁相互作用发生的。在这里,我们修改了octogen(High Melt eXplosive,HMX)的热分解动力学表达式,以耦合入射微波(MW)场的影响。该修正动力学模型用于研究我们之前的实验工作,该实验表明HMX粉末点火时的表面温度会因MW场而降低。Fridman-Macheret α 模型是等离子体化学中的常用方法,并被纳入 Henson/Smilowitz HMX 动力学;这有效地降低了振动激发的带电反应中间体的活化能(E-a)。在 COMSOL Multiphysics 软件中实现了修正的动力学模型。验证了点火热时间;结果,与热点火相比,等离子体的形成将表面温度降低了23摄氏度。通过一个经过验证的动力学模型,可以模拟纯热点火和混合热/等离子体点火,我们能够模拟我们之前的实验工作,表明与热启动相比,等离子点火降低了点火时的表面温度。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号