首页> 外文期刊>Journal of geophysical research >Full-Field Modeling of Heat Transfer in Asteroid Regolith: Radiative Thermal Conductivity of Polydisperse Particulates
【24h】

Full-Field Modeling of Heat Transfer in Asteroid Regolith: Radiative Thermal Conductivity of Polydisperse Particulates

机译:小行星风化层传热的全场建模:多分散颗粒的辐射热导率

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

abstract_textpCharacterizing the surface material of an asteroid is important for understanding its geology and for informing mission decisions, such as the selection of a sample site. Diurnal surface temperature amplitudes are directly related to the thermal properties of the materials on the surface. We describe a numerical model for studying the thermal conductivity of particulate regolith in vacuum. Heat diffusion and surface-to-surface radiation calculations are performed using the finite element (FE) method in three-dimensional meshed geometries of randomly packed spherical particles. We validate the model for test cases where the total solid and radiative conductivity values of particulates with monodisperse particle size frequency distributions (SFDs) are determined at steady-state thermal conditions. Then, we use the model to study the bulk radiative thermal conductivity of particulates with polydisperse, cumulative power law particle SFDs. We show that for each polydisperse particulate geometry tested, there is a corresponding monodisperse geometry with some effective particle diameter that has an identical radiative thermal conductivity. These effective diameters are found to correspond very well to the Sauter mean particle diameter, which is essentially the surface area-weighted mean. Next, we show that the thermal conductivity of the particle material can have an important effect on the radiative component of the thermal conductivity of particulates, especially if the particle material conductivity is very low or the spheres are relatively large, owing to non-isothermality in each particle. We provide an empirical correlation to predict the effects of non-isothermality on radiative thermal conductivity in both monodisperse and polydisperse particulates./ppPlain Language Summary/ppThe thermal conductivity of asteroid regolith is related to the properties of the particulate assemblage (e.g., size distribution). Spacecraft missions that measure the surface temperature of asteroids, like OSIRIS-REx at asteroid Bennu, can take advantage of this by relating the observed temperatures to the physical properties of the regolith. We present a 3D model for studying the thermal conductivity of regolith, where heat flow is simulated in randomly packed spheres. We found that for cases where the particle sizes are monodisperse, our model reproduces the thermal conductivity values predicted by simpler theoretical models. However, this is only true if the particles themselves are made of a material that itself has relatively high thermal conductivity, which may not be the case for the regolith on Bennu. We determined the values for a correction factor to account for these cases. Neglecting it could cause one to appreciably underestimate particle sizes on asteroid surfaces, which could pose a risk for sample collection. Finally, we found that regoliths with particle size mixtures can have radiative thermal conductivities that are identical to monodisperse regoliths. We found that the surface area-weighted mean particle size of the mixed regoliths is representative of the bulk radiative thermal conductivity./p/abstract_text
机译:表征小行星的表面材料对于了解其地质情况和为任务决策提供信息非常重要,例如选择采样地点。昼夜表面温度振幅与表面材料的热性能直接相关。我们描述了一个用于研究真空中颗粒风化层热导率的数值模型。使用有限元 (FE) 方法在随机堆积球形颗粒的三维网格几何形状中执行热扩散和表面对表面辐射计算。我们验证了测试用例的模型,其中具有单分散粒径频率分布 (SFD) 的颗粒的总固体和辐射电导率值是在稳态热条件下确定的。然后,我们利用该模型研究了具有多分散、累积幂律粒子SFD的颗粒的体积辐射热导率。我们表明,对于测试的每个多分散颗粒几何形状,都有一个相应的单分散几何形状,该几何形状具有一些具有相同辐射热导率的有效颗粒直径。发现这些有效直径与 Sauter 平均颗粒直径非常吻合,后者本质上是表面积加权平均值。接下来,我们表明,颗粒材料的热导率可以对颗粒热导率的辐射分量产生重要影响,特别是当颗粒材料电导率非常低或球体相对较大时,由于每个颗粒中的非等温性。我们提供了一个经验相关性来预测非等温性对单分散和多分散颗粒的辐射热导率的影响。简明语言摘要小行星风化层的热导率与颗粒组合的性质(例如,粒径分布)有关。测量小行星表面温度的航天器任务,如小行星Bennu的OSIRIS-REx,可以通过将观测到的温度与风化层的物理特性联系起来来利用这一点。我们提出了一个用于研究风化层热导率的 3D 模型,其中在随机堆积的球体中模拟热流。我们发现,对于颗粒尺寸为单分散的情况,我们的模型再现了更简单的理论模型预测的热导率值。然而,只有当颗粒本身由本身具有相对较高导热性的材料制成时,这才是正确的,而Bennu上的风化层可能并非如此。我们确定了修正因子的值来解释这些情况。忽视它可能会导致人们明显低估小行星表面的颗粒大小,这可能会给样本采集带来风险。最后,我们发现具有粒径混合物的风化层可以具有与单分散风化层相同的辐射热导率。结果表明,混合风化层的表面积加权平均粒径代表了整体辐射热导率。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号