首页> 外文期刊>The Journal of Chemical Physics >Transport coefficients of gel electrolytes: A molecular dynamics simulation study
【24h】

Transport coefficients of gel electrolytes: A molecular dynamics simulation study

机译:Transport coefficients of gel electrolytes: A molecular dynamics simulation study

获取原文
获取原文并翻译 | 示例
           

摘要

The responses of gel electrolytes to stimuli make them useful in applications such as sensors and actuators. However, few studies have explored their transport properties from a molecular viewpoint. We studied the transport coefficients of gel electrolytes based on perfluorinated sulfonic acid using molecular dynamics simulations. The transport coefficients for electric and pressure fields, namely, the ionic conductivity, Darcy permeability, and cross coupling constant, were calculated based on Kubo's linear response theory from the corresponding velocity correlation functions and mean square displacements. The effects of the water content of the gel electrolyte and those of the monovalent cationic species were also analyzed. The calculated transport coefficients qualitatively agree with the reported experimental results. The role of the cross coupling constants in determining the functional efficiency of gel electrolytes as pressure sensors or electro active actuators is discussed. Published under an exclusive license by AIP Publishing.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号