首页> 外文期刊>IEEE Journal on Selected Areas in Communications >Design of a 5G Network Slice Extension With MEC UAVs Managed With Reinforcement Learning
【24h】

Design of a 5G Network Slice Extension With MEC UAVs Managed With Reinforcement Learning

机译:Design of a 5G Network Slice Extension With MEC UAVs Managed With Reinforcement Learning

获取原文
获取原文并翻译 | 示例
       

摘要

Network slices for delay-constrained applications in 5G systems require computing facilities at the edge of the network to guarantee ultra-low latency in processing data flows generated by connected devices, which is challenging with larger volumes of data, and larger distances to the edge of the network. To address this challenge, we propose to extend 5G network slices with Unmanned Aerial Vehicles (UAV) equipped with multi-access edge computing (MEC) facilities. However, onboard computing elements (CE) consume UAV’s battery power thus impacting its flight duration. We propose a framework where a System Controller (SC) can turn on and off UAV’s CEs, with the possibility of offloading jobs to other UAVs, to maximize an objective function defined in terms of power consumption, job loss, and incurred delay. Management of this framework is achieved by reinforcement learning. A Markov model of the system is introduced to enable reinforcement learning and provide guidelines for the selection of system parameters. A use case is considered to demonstrate the gain achieved by the proposed framework and discuss numerical results.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号