首页> 外文期刊>Energy & Fuels >Urea-Assisted Nickel-Manganese Phosphate Composite Microarchitectures with Ultralong Lifecycle for Flexible Asymmetric Solid-State Supercapacitors: A Binder-Free Approach
【24h】

Urea-Assisted Nickel-Manganese Phosphate Composite Microarchitectures with Ultralong Lifecycle for Flexible Asymmetric Solid-State Supercapacitors: A Binder-Free Approach

机译:Urea-Assisted Nickel-Manganese Phosphate Composite Microarchitectures with Ultralong Lifecycle for Flexible Asymmetric Solid-State Supercapacitors: A Binder-Free Approach

获取原文
获取原文并翻译 | 示例
       

摘要

The limited energy density and cyclability of supercapacitors are major roadblocks to their development as energy storage devices. To address these issues, a binder-free nickel-manganese (Ni-Mn) phosphate composite (NMP series) microarchitecture has been synthesized by the hydrothermal method on a nickel foam (NF) substrate using various urea dosages. Due to the influence of urea, microrod-/microplate-like morphologies of NMP series thin films evolved to micropetals. This study demonstrates a synergy between Ni and Mn metal ions and also the influence of different urea contents on the physicochemical properties of mesoporous NMP series thin films. Notably, the NMP-4 microarchitecture has a large surface area (7.5 m~2 g~(-1)), which provides more electroactive sites in electrochemical measurements. Accordingly, in the NMP series electrodes, the NMP-4 thin film demonstrated high electrochemical properties (the maximum specific capacity was found to be 901 C/g at a 5 mV/s scan rate) and retained 127 capacity over 6000 cycles, indicating good durability with a well-preserved microstructure throughout the cycling. Furthermore, a flexible asymmetric solid-state (FASS) supercapacitor was designed utilizing NMP-4 and reduced graphene oxide (rGO) as a cathode and an anode, respectively, in the poly(vinyl alcohol)-KOH (PVA-KOH) gel electrolyte with an extended operational voltage of + 1.8 V. This FASS device provides a high specific capacity (192 C/g at 0.6 A/g current density), supreme energy density (48.2 Wh kg~(-1)) at a power density of 575 W kg~(-1), and a desirable longevity of 108 over 5000 cycles. Moreover, the FASS device also demonstrated its practical applicability. The long-term stability suggests that the binder-free urea-assisted Ni-Mn phosphate composite is a good candidate for energy storage devices.

著录项

  • 来源
    《Energy & Fuels》 |2022年第21期|13356-13369|共14页
  • 作者单位

    Department of Physics, Sejong University, Seoul 05006, Republic of Korea;

    Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea;

    Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类
  • 关键词

  • 入库时间 2024-01-25 19:13:39
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号