...
首页> 外文期刊>Science & sports >Brain hemodynamic changes during sprint interval cycling exercise and recovery periods
【24h】

Brain hemodynamic changes during sprint interval cycling exercise and recovery periods

机译:Brain hemodynamic changes during sprint interval cycling exercise and recovery periods

获取原文
获取原文并翻译 | 示例

摘要

? 2022 Elsevier Masson SASObjectives: The prefrontal cortex (PFC) is one of the most investigated brain regions on exercise due to its relationship with maintaining exercise. This study aims to demonstrate the effects of a high-intensity exercise on cerebral hemodynamic parameters in the PFC and how physical load reflects on PFC. Methods: Twelve male (mean ± SD: age = 20 ± 1.56 years) performed the Wingate Anaerobic Test (WAnT; 30-s all-out) for three repetitions as a Sprint Interval Training (SIT) exercise model via a cycling ergometer with 4 min of active recovery (50 W, 50 rpm) between the repetitions. A functional Near-infrared Spectroscopy (fNIRS) device was used to record hemodynamic changes of the prefrontal cortex throughout the entire protocol. Results: The oxy-hemoglobin (oxy-Hb) and total-hemoglobin (total-Hb) levels in the PFC were increased significantly (P < 0.001), while the power outputs were decreased in repetitive WAnT's (P < 0.05). The oxy-Hb values were higher than the pre-exercise values even in the recovery periods between WAnT's (P < 0.001). Conclusions: In conclusion, repeated load with the active recovery periods might be an optimal approach for increasing the PFC oxygenation to its peak values. These results suggest that a repeated Wingate test could be used as a test to improve the metabolic condition of the athlete's brain.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号