首页> 外文期刊>International journal of hydrogen energy >Experimental study of thermal efficiency and NOx emission of turbocharged direct injection hydrogen engine based on a high injection pressure
【24h】

Experimental study of thermal efficiency and NOx emission of turbocharged direct injection hydrogen engine based on a high injection pressure

机译:基于高喷射压力的涡轮增压直喷氢气发动机热效率和NOx排放实验研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The direct injection (DI) hydrogen-fueled internal combustion engine (H2-ICE), as a promising carbon-neutral power device, has attracted more and more attention. However, the effects of the hydrogen injection strategy on the performance of H2-ICE lack in-depth analysis, even under the high injection pressure. Therefore, the present work investi-gated the thermal efficiency and NOx emissions with a single-hole injector over a wide range of high injection pressure and injection timing in a 3-cylinder turbocharged DI H2- ICE. The results show the strong dependence of high thermal efficiency on turbocharging and lean-burn strategies. The late-injection strategy can achieve higher thermal efficiency than the early-injection strategy, which can be applied at a wide range of loads. The effect of injection strategy on the brake thermal efficiency (BTE) mainly depends on the wall heat loss. Hydrogen late injection can reduce the wall heat loss by about 2 through strong mixture stratification. Furthermore, hydrogen late injection is always accompanied by a sharp increase in NOx emissions, even by orders of magnitude. This trade-off relationship between thermal efficiency and NOx emissions can be well optimized by a moderate late-injection strategy with an end-of-injection (EOI) of about 40 degrees CA. At the given load and start of injection (SOI), increasing the injection pressure from 5 MPa to 15 MPa can reduce the hydrogen injection duration by about 3 times. Under the higher injection pressure, the BTE performs a strong sensitivity to SOI. The BTE is improved by about 0.5 by optimizing SOI at PInj = 5 MPa mainly due to the reduced compression loss caused by further delay to the SOI allowed by higher injection pressure, while this improvement increases to about 2.3 at PInj = 15 MPa. However, at a given SOI, the highest BTE at PInj = 5 MPa is nearly 1.5 higher than that at PInj 1/4 15 MPa, which implies the potential of low-pressure injection coupled with large-flow injectors. Finally, the DI H2-ICE performs well in terms of efficiency with a maximum BTE of 44.08. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:直喷(DI)氢燃料内燃机(H2-ICE)作为一种很有前途的碳中和动力装置,越来越受到人们的关注。然而,即使在高注入压力下,注氢策略对H2-ICE性能的影响也缺乏深入的分析。因此,本工作研究了单孔喷油器在3缸涡轮增压DI H2-ICE的宽范围高喷射压力和喷射正时下的热效率和NOx排放。结果表明,高热效率对涡轮增压和稀燃策略具有很强的依赖性。后期注入策略可以实现比早期注入策略更高的热效率,后者可以应用于很宽的负载范围。喷射策略对制动器热效率(BTE)的影响主要取决于壁面热损失。氢气后期注入可通过强混合分层,使壁面热损失减少2%左右。此外,氢气后期注入总是伴随着氮氧化物排放量的急剧增加,甚至增加了几个数量级。热效率和氮氧化物排放之间的这种权衡关系可以通过适度的后期注入策略得到很好的优化,注入末端(EOI)约为40°C。在给定的载荷和注塑开始(SOI)下,将喷射压力从5 MPa提高到15 MPa,可以将注氢时间缩短约3倍。在较高的注射压力下,BTE对SOI具有很强的敏感性。在PInj = 5 MPa时优化SOI可使BTE提高约0.5%,这主要是由于更高的注射压力允许SOI进一步延迟而导致的压缩损失减少,而在PInj = 15 MPa时,这种改善增加到约2.3%。然而,在给定的SOI下,PInj = 5 MPa时的最高BTE比PInj 1/4 15 MPa时的最高BTE高出近1.5%,这意味着低压注入与大流量注入器耦合的潜力。最后,DI H2-ICE在效率方面表现良好,最大BTE为44.08%。(c) 2022 Hydrogen Energy Publications LLC.,由爱思唯尔有限公司出版。保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号