首页> 外文期刊>International journal of computational materials science and engineering >Porosity-dependent buckling analysis of elastically supported FGM sandwich plate via new tangent HSDT: A meshfree approach
【24h】

Porosity-dependent buckling analysis of elastically supported FGM sandwich plate via new tangent HSDT: A meshfree approach

机译:Porosity-dependent buckling analysis of elastically supported FGM sandwich plate via new tangent HSDT: A meshfree approach

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, new tangent shape function-based higher-order transverse shear deformation theory (NTHSDT) is proposed to compute the buckling behavior of the elastically supported functionally graded material (FGM) sandwich plates under porous medium. The proposed theory is found to be variationally consistent and fulfills the zero traction boundary conditions on the bottom and top layer without a shear correction factor. The material properties are presumed to be graded in the thickness direction as characterized by a modified power law distribution in terms of volume fraction of constituents. The governing equations are derived using Hamilton’s Principle. A strong form of solution discretizes the governing equations by employing a thin plate spline radial basis function-based collocation (TSRBFC) method. The proposed theory is efficient, reliable, and is in close agreement with the results in the literature. Comparison studies show that the NTHSDT is more accurate than other plate theories and is simple in analyzing buckling behavior. A parametric study is done to examine the effects of grading index, porosity index, sandwich schemes, aspect ratio, side-to-length thickness ratio and foundation stiffness.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号