...
首页> 外文期刊>Journal of Materials Science >Enhancing oxygen reduction activity of α-MnO2 by defect-engineering and N doping through plasma treatments
【24h】

Enhancing oxygen reduction activity of α-MnO2 by defect-engineering and N doping through plasma treatments

机译:Enhancing oxygen reduction activity of α-MnO2 by defect-engineering and N doping through plasma treatments

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Abstract MnO2 is a promising catalyst for oxygen reduction and metal–air batteries due to the natural abundance, low cost and nontoxicity. Improving its activity is an important challenge for its large-scale commercialization. Defect engineering and heteroatom doping are the most effective means and can be easily operated through plasma treatment at different atmospheres. In this work, defects on MnO2 are manufactured via rapid plasma treatment at Ar atmosphere while both defects and N-doping are simultaneously fabricated at N2 atmosphere. N–MnO2 exhibits a greatly enhanced ORR activity with a half-wave potential of 0.84 V, a limiting current density of 6.7 mA cm−2 and the number of transferred electrons of 3.9. In neutral Mg-air battery, N–MnO2-based battery exhibits a max power density of 124.3 mW cm−2 at a current density of 255.4 mA cm−2 and excellent stability under different working condition. These superior performances of N–MnO2 to Ar–MnO2 and pristine α-MnO2 demonstrate that the defects and N-doping by plasma treatment at N2 atmosphere significantly enhance the oxygen reduction activity. This work reveals the relationship between microstructure and oxygen reduction reaction and supplies a new idea for the developing economical and efficient oxygen reduction reaction catalysts for metal–air batteries.Graphical Abstract

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号