首页> 外文期刊>mendeleev communications >The first synthesis of furocoumarin dimers
【24h】

The first synthesis of furocoumarin dimers

机译:呋喃香豆素二聚体的首次合成

获取原文
获取外文期刊封面目录资料

摘要

Mendeleev Communications Electronic Version, Issue 6, 1997 (pp. 213ndash;252) The first synthesis of furocoumarin dimers Valery F. Traven,* Dmitrii V. Kravtchenko and Tatrsquo;yana A. Chibisova D. I. Mendeleev Russian University of Chemical Technology, 125190 Moscow, Russian Federation. Fax: +7 095 200 4204 Self-condensation of 4-methyl-2H-8,9-dihydrofuro2,3-h-1-benzopyran-2,9-diones provides the first example of the synthesis of a furocoumarin dimer. 2H-Furo-1-benzopyran-2-ones (furocoumarins) are widespread natural products. Many of them are useful in the treatment of human skin diseases.1ndash;7 The biological activity of these compounds is based on their ability to react with the pyrimidine bases, particularly with thymine, under UV light. 2H-Furo2,3- g-1-benzopyran-2-ones (psoralens) are bifunctional, since they can crosslink with DNA. 2H-Furo2,3-h-1-benzopyran-2-ones (angelicins) are monofunctional, since they cannot crosslink with DNA due to their angular geometry. However, there are no reports concerning the pharmaceutical properties and photoreactivity of furocoumarin dimers. Moreover, furocoumarin dimers have not yet been synthesized. Whilst developing new ways of synthesising furocoumarin derivatives based on the Fries rearrangement of hydroxy-2H- 1-benzopyran-2-one chloroacetates,8,9 we have undertaken the first synthesis of an angelicin dimer. 4-Methyl-2H-8,9-dihydrofuro2,3-h-1-benzopyran-2,9-diones 1 possess a definite enolate reactivity. For example, compound 1a undergoes croton-type condensations with aldehydes and ketones in acetic acid in the presence of HCl.According to spectral data, the condensation products ndash; 8-benzylideno- 4-methyl-2H-8,9-dihydrofuro2,3-h-1-benzopyran-2,9-diones 2 ndash; have an enone (croton-type) structure (Scheme 1). Intermediate ketols have not been detected among the condensation products. Compounds 1 also undergo self-condensation with dimer formation.dagger; However, neither enone 2e nor intermediate ketol 3 (from compound 1 self-condensation) products have yet been found in the reaction mixtures.Intermediate ketols 3 seem to undergo dehydration with aromatization and furan ring formation. The final products ndash; 9-(4'-methyl- 2'H-8',9'-dihydrofuro2',3'-h-1'-benzopyran-2',9'-dione-8'-yl)- 4-methyl-2H-8,9-dihydrofuro2,3-h-1-benzopyran-2,9-diones 4 ndash; turn out to be more stable when compared with enone condensation products 2e.A small amount of 4a has also been detected among the 7-chloroacetoxy-4-methylcoumarin Fries rearrangement products.9 dagger; Self-condensation of 4-methyldihydrofuro2,3-hcoumarin-9-ones 1 (general procedure). A mixture of compound 1 (4.6 mmol), glacial acetic acid (12 ml) and concentrated HCl (6 ml) was refluxed for 3 h.Product 4 was filtrated off, washed with hot acetone and recrystallized from DMSO. Strong Lewis acids (including AlCl3) are known to catalyse the processes of dehydration and condensation of polycyclic aromatic hydrocarbons and heteroarenes.10 Its content is increased to a maximum of 5 in the reaction mixture under Fries rearrangement temperatures higher than 120 deg;C.According to 1H NMR spectral data, compounds 4 exist in the keto form. However, their enol forms have been isolated as the acetates 5 through acetylation by acetic anhydride in the presence of catalytic amounts of H2SO4. Reduction of the compounds 4 by NaBH4 in dioxanendash; methanol leads to the corresponding alcohols 6, which upon dehydration in H2SO4 gave the 4-methylangelicin 2,3'-bifuran dimers 7 (Scheme 2).The melting points and spectral data of new compounds are listed below.Dagger; Dagger; 1H NMR spectra were recorded on a Varian Gemini-200 spectrometer (USA) at 200 MHz using TMS as internal standard. Chemical shifts are given in ppm. Mass spectra were scanned on a SSQ-710 (Finnigan MAT) spectrometer (USA) at an energy of ionising electrons equal to 70 eV. 2a: mp 286ndash;287 deg;C; 1H NMR (200 MHz, 2H6acetone), d: 2.55 (d, 3H, 4-Me, J3,Me 1.2 Hz), 6.34 (q, 1H, 3-H, JMe,3 1.2 Hz), 6.93 s, 1H, =(Ph)Cndash;H, 7.48 (d, 1H, 6-H, J5,6 8.7 Hz), 7.50 (m, 3H, 3'-H, 4'-H and 5'-H), 8.05 (m, 2H, 2'-H and 6'-H), 8.20 (d, 1H, 5-H, J6,5 8.7 Hz); MS, m/z: 304 (M+, 61), calc.for C19H12O4: 304. 2b: mp 330ndash;331 deg;C; 1H NMR (200 MHz, 2H6DMSO), d: 2.44 (d, 3H, 4-Me, J3,Me 0.9 Hz), 3.86 (s, 3H, OMe), 6.35 (q, 1H, 3-H, JMe,3 0.9 Hz), 6.85 (d, 1H, 5'-H, J6',5' 8.5 Hz), 6.90 s, 1H, =(Ph)Cndash;H, 7.48 (d, 1H, 6-H, J5,6 9.0), 7.49 (dd, 1H, 6'-H, J5',6' 8.5 Hz, J2',6' 0.9 Hz), 7.54 (d, 1H, 2'-H, J6',2' 0.9 Hz), 8.09 (d, 1H, 5-H, J6,5 9.0 Hz), 9.94 (s, 1H, OH); MS, m/z: 350 (M+, 100), calc.for C20H14O6: 350. 2c: mp 354ndash;355 deg;C; 1H NMR (200 MHz, 2H6DMSO), d: 2.50 (d, 3H, 4-Me, J3,Me 0.9 Hz), 6.38 (q, 1H, 3-H, JMe,3 0.9 Hz), 7.08 s, 1H, =(Ph)Cndash;H, 7.50 (d, 1H, 6-H, J5,6 9.0 Hz), 8.18 (d, 2H, 2'-H, J3',2' 8.5 Hz), 8.23 (d, 1H, 5-H, J6,5 9.0 Hz), 8.30 (d, 2H, 3'-H, J2',3' 8.5 Hz); MS, m/z: 349 (M+, 100), calc.for C19H11NO6: 349. 2d: mp 263ndash;264 deg;C; 1H NMR (200 MHz, 2H6DMSO), d: 2.40 (s, 3H, 4'-Me), 2.50 (d, 3H, 4-Me, J3,Me 1.0 Hz), 2.69 s, 3H, =(Ph)Cndash;Me, 6.26 (q, 1H, 3-H, JMe,3 1.0 Hz), 7.20 (d, 1H, 6-H, J5,6 8.5 Hz), 7.30 (d, 2H, 3'-H, J2',3' 8.4 Hz), 7.65 (d, 2H, 2'-H, J3',2' 8.4 Hz), 8.06 (d, 1H, 5-H, J6,5 8.5 Hz); MS, m/z: 332 (M+, 86), calc.for C21H16O4: 332. 4a: mp 310 deg;C (decomp.); 1H NMR (200 MHz, 2H6DMSO), d: 2.42 (d, 3H, 4'-Me, J3',Me' 0.9 Hz), 2.50 (d, 3H, 4-Me, J3,Me 0.9 Hz), 6.10 (q, 1H, 3'-H, JMe',3' 0.9 Hz), 6.27 (s, 1H, 8'-H), 6.30 (q, 1H, 3-H, JMe,3 0.9 Hz), 7.16 (d, 1H, 6'-H, J5',6' 8.9 Hz), 7.64 (d, 1H, 6-H, J5,6 9.0 Hz), 7.74 (d, 1H, 5-H, J6,5 9.0 Hz), 8.10 (d, 1H, 5'-H, J6',5' 8.9 Hz), 8.45 (s, 1H, 8-H); MS, m/z: 414 (M+, 100), calc.for C24H14O7: 414. 4b: mp 275 deg;C (decomp.); 1H NMR (200 MHz, 2H6DMSO), d: 1.15 (t, 3H, Me', JCH2',Me' 7.7 Hz), 1.33 (t, 3H, Me, JCH2,Me 7.6 Hz), 2.42 (d, 3H, 4'-Me, J3',Me' 0.9 Hz), 2.50 (d, 3H, 4-Me, J3,Me 0.9 Hz), 2.71 (q, 2H, CH2', JMe',CH2' 7.7 Hz), 2.94 (q, 2H, CH2, JMe,CH2 7.6 Hz), 6.10 (q, 1H, 3'-H, JMe',3' 0.9 Hz), 6.32 (s, 1H, 8'-H), 6.33 (q, 1H, 3-H, JMe,3 0.9 Hz), 7.57 (s, 1H, 5-H), 7.96 (s, 1H, 5'-H), 8.56 (s, 1H, 8-H); MS, m/z: 470 (M+, 100), calc.for C28H22O7: 470. 5a: mp 313ndash;314 deg;C; 1H NMR (200 MHz, 2H6DMSO), d: 2.42 (s, 3H, OAc), 2.52 (2d, 6H, 4-Me and 4'-Me), 6.37 (2q, 2H, 3-H and 3'-H), 7.61 (d, 1H, 6'-H, J5',6' 8.7 Hz), 7.72 (d, 1H, 6-H, J5,6 8.7 Hz), 7.80 (d, 1H, 5-H, J6,5 8.7 Hz), 7.84 (d, 1H, 5'-H, J6',5' 8.7 Hz), 8.54 (s, 1H, 8-H); MS, m/z: 456 (M+, 2), calc.for C26H16O8: 456. 5b: mp 277ndash;278 deg;C (decomp.); 1H NMR (200 MHz, 2H6DMSO), d: 1.35 (2t, 6H, Me and Me'), 2.42 (s, 3H, OAc), 2.52 (2d, 6H, 4-Me and 4'-Me), 2.97 (2q, 4H, CH2 and CH2'), 6.37 (2q, 2H, 3-H and 3'-H), 7.60 (s, 1H, 5-H), 7.66 (s, 1H, 5'-H), 8.60 (s, 1H, 8-H); MS, m/z: 512 (M+, 2), calc.for C30H24O8: 512. O O Me O O R O + O O Me O O R Scheme 1 Reagents and conditions: i, AcOH, HCl, 100 deg;C, 1 h. 1a 2 R R1 2a H H 2b H 4'-OH, 3'-OMe 2c H 4'-NO2 2d Me 4'-Me R1 R1 i 85ndash;90Mendeleev Communications Electronic Version, Issue 6, 1997 (pp. 213ndash;252) This work was generously funded by the Highest Education State Committee of Russian Federation (program lsquo;Fine Organic Synthesisrsquo;). References 1 F. Dallrsquo;Acqua, D. Vedaldi, S. Caffieri, A. Guiotto, P. Rodighiero, F. Baccichetti, F. Carlassare and F. Bordin, J. Med. Chem., 1981, 24, 178. 2 A.Guiotto, P. Rodighiero, P. Manzini, G. Pastorini, F. Bordin, F. Baccichetti, F. Carlassare, D. Vedaldi, F. Dallrsquo;Acqua, M. Tamaro, G. Recchia and M. Cristofolini, J. Med. Chem., 1984, 27, 959. 3 F. Bordin, F. Carlassare, F. Baccichetti, A. Guiotto, P. Rodighiero, D. Vedaldi and F. Dallrsquo;Acqua, Photochem., Photobiol., 1979, 29, 1063. 4 F. Dallrsquo;Acqua, D. Vedaldi, A. Guiotto, P. Rodighiero, F.Carlassare, F. Baccichetti and F. Bordin, J. Med. Chem., 1981, 24, 806. 5 A. Guiotto, P. Rodighiero, G. Pastorini, P. Manzini, F. Bordin, F. Baccichetti, F. Carlassare, D. Vedaldi and F. Dallrsquo;Acqua, Eur. J. Med. Chem.-Chim. Ther., 1981, 16, 489. 6 F. Dallrsquo;Acqua, D. Vedaldi, F. Bordin, F. Baccichetti, F. Carlassare, M. Tamaro, P. Rodighiero, G. Pastorini, A. Guiotto, G. Recchia and M.Cristofolini, J. Med. Chem., 1983, 26, 870. 7 D. Vedaldi, F. Dallrsquo;Acqua, F. Baccichetti, F. Carlassare, F. Bordin, P. Rodighiero, P. Manzini and A. Guiotto, Farmaco., 1991, 46, 1381. 8 V. F. Traven, D. V. Kravtchenko and T. A. Chibisova, Mendeleev Commun., 1995, 21. 9 V. F. Traven, D. V. Kravtchenko, T. A. Chibisova, S. V. Shorshnev, R. Eliason and D. H. Wakefield, Heterocyclic Commun., 1996, 2, 345. 10 H. Wang and L. D. Kispert, J. Chem. Soc., Perkin Trans. 2, 1989, 1463. 6a: mp 283ndash;284 deg;C; 1H NMR (200 MHz, 2H6DMSO), d: 2.42 (d, 3H, 4'-Me, J3',Me' 1.0 Hz), 2.52 (d, 3H, 4-Me, J3,Me 1.0 Hz), 5.63 (d, 1H, 9'-OH, J9',9-OH' 7.2 Hz), 5.86 (dd, 1H, 9'-H, J9-OH',9' 7.2 Hz, J8',9' 7.1 Hz), 6.17 (dd, 1H, 8'-H, J9',8' 7.1 Hz, J8,8' 1.2 Hz), 6.21 (q, 1H, 3'-H, JMe',3' 1.0 Hz), 6.39 (q, 1H, 3-H, JMe,3 1.0 Hz), 7.04 (d, 1H, 6'-H, J5',6' 8.7 Hz), 7.63 (d, 1H, 6-H, J5,6 8.8 Hz), 7.74 (d, 1H, 5-H, J6,5 8.8 Hz), 8.77 (d, 1H, 5'-H, J6',5' 8.7 Hz), 8.09 (d, 1H, 8-H, J8',8 1.2 Hz); MS, m/z: 416 (M+, 29), calc.for C24H16O7: 416. 6b: mp 297ndash;298 deg;C; 1H NMR (200 MHz, 2H6DMSO), d: 1.27 (t, 3H, Me', JCH2',Me' 7.7 Hz), 1.35 (t, 3H, Me, JCH2,Me 7.6 Hz), 2.44 (d, 3H, 4'-Me, J3',Me' 1.0 Hz), 2.52 (d, 3H, 4-Me, J3,Me 1.0 Hz), 2.73 (q, 2H, CH2', JMe',CH2' 7.7 Hz), 2.96 (q, 2H, CH2, JMe,CH2 7.6 Hz), 5.58 (d, 1H, 9'-OH, J9',9'-OH 7.2 Hz), 5.84 (dd, 1H, 9'-H, J9'-OH,9' 7.2 Hz, J8',9' 7.1 Hz), 6.15 (dd, 1H, 8'-H, J9',8' 7.1 Hz, J8,8' 1.1 Hz), 6.19 (q, 1H, 3'-H, JMe',3' 1.0 Hz), 6.36 (q, 1H, 3-H, JMe,3 1.0 Hz), 7.55 (s, 1H, 5-H), 7.57 (s, 1H, 5'-H), 8.09 (d, 1H, 8-H, J8',8 1.1 Hz); MS, m/z: 472 (M+, 28), calc.for C28H24O7: 472. 7a: mp 319ndash;320 deg;C; 1H NMR (200 MHz, 2H6DMSO), d: 2.51 (2d, 6H, 4-Me and 4'-Me), 6.34 (q, 1H, 3'-H, JMe',3' 1.0 Hz), 6.44 (q, 1H, 3-H, JMe,3 1.0 Hz), 7.54 (d, 1H, 6'-H, J5',6' 8.7 Hz), 7.64 (d, 1H, 6-H, J5,6 8.9 Hz), 7.66 (d, 1H, 5-H, J6,5 8.9 Hz), 7.78 (d, 1H, 5'-H, J6',5' 8.7 Hz), 7.91 (s, 1H, 9'-H), 8.65 (s, 1H, 8-H); MS, m/z: 398 (M+, 100), calc. for C24H14O6: 398. 7b: mp 315ndash;316 deg;C; 1H NMR (200 MHz, 2H6DMSO), d: 1.36 (2t, 6H, Me and Me'), 2.51 (2d, 6H, 4-Me and 4'-Me), 2.99 (2q, 4H, CH2 and CH2'), 6.31 (q, 1H, 3'-H, JMe',3' 0.9 Hz), 6.40 (q, 1H, 3-H, JMe,3 0.9 Hz), 7.47 (s, 1H, 5-H), 7.59 (s, 1H, 5'-H), 7.86 (s, 1H, 9'-H), 8.67 (s, 1H, 8-H); MS, m/z: 454 (M+, 100), calc. for C28H22O6: 454. O O O O O Me R HO O Me R O 1 i 85 O O O O O Me R O Me R O O O O O O Me R O Me R O O O O O O Me R O Me R 6 iv 60 iii 65 O O O O O Me R O Me R OAc 3 2e 5 4 7 a R = H b R = Et Scheme 2 Reagents and conditions: i, AcOH, HCl, 100 deg;C, 3 h; ii, Ac2O, H2SO4, 120 deg;C, 1 h; iii, NaBH4, dioxane, MeOH, 20 deg;C, 2 h; iv, 20 H2SO4, EtOH, 80 deg;C, 3 h. ii 75 Received: Moscow, 20th March 1997 Cambridge, 17th July 1997; Com. 7/02263H
机译:Mendeleev Communications Electronic Version,第 6 期,1997 年(第 213-252 页) 呋喃香豆素二聚体的首次合成 Valery F. Traven,* Dmitrii V. Kravtchenko 和 Tat'yana A. Chibisova D. I. Mendeleev 俄罗斯化学技术大学,125190 莫斯科,俄罗斯联邦。传真: +7 095 200 4204 4-甲基-2H-8,9-二氢呋喃并[2,3-h]-1-苯并吡喃-2,9-二酮的自缩合是合成呋喃香豆素二聚体的第一个例子。2H-呋喃-1-苯并吡喃-2-酮(呋喃香豆素)是广泛使用的天然产物。它们中的许多可用于治疗人类皮肤病.1-7 这些化合物的生物活性基于它们在紫外线下与嘧啶碱基反应的能力,特别是与胸腺嘧啶反应的能力。2H-呋喃并[2,3-g]-1-苯并吡喃-2-酮(补骨脂素)具有双功能性,因为它们可以与DNA交联。2H-呋喃并[2,3-h]-1-苯并吡喃-2-酮(当归素)是单官能团的,因为它们由于其角几何形状而不能与DNA交联。然而,目前还没有关于呋喃香豆素二聚体的药学性质和光反应性的报道。此外,呋喃香豆素二聚体尚未合成。在开发基于羟基-2H-1-苯并吡喃-2-酮氯乙酸酯的弗里斯重排的呋喃香豆素衍生物的新方法的同时,8,9我们进行了当归素二聚体的首次合成。4-甲基-2H-8,9-二氢呋喃并[2,3-H]-1-苯并吡喃-2,9-二酮1具有一定的烯醇酯反应性。例如,化合物1a在HCl存在下与乙酸中的醛和酮发生巴豆型缩合,根据光谱数据,缩合产物 - 8-苄基烯-4-甲基-2H-8,9-二氢呋喃并[2,3-h]-1-苯并吡喃-2,9-二酮2 - 具有烯酮(巴豆型)结构(方案1)。在缩合产物中未检测到中间酮醇。化合物 1 也发生自缩合并形成二聚体.† 然而,在反应混合物中尚未发现烯酮 2e 和中间酮醇 3(来自化合物 1 自缩合)产物。中间酮 3 似乎经历脱水,芳构化和呋喃环形成。最终产物 - 9-(4'-甲基-2'H-8',9'-二氢呋喃并[2',3'-h]-1'-苯并吡喃-2',9'-二酮-8'-基)- 4-甲基-2H-8,9-二氢呋喃并[2,3-h]-1-苯并吡喃-2,9-二酮 4 - 与烯酮缩合产物2e相比,结果更稳定。在7-氯乙酰氧基-4-甲基香豆素薯条重排产物中也检测到少量的4a.9 † 4-甲基二氢呋喃并[2,3-h]香豆素-9-酮的自缩合1(一般程序)。将化合物1(4.6mmol)、冰醋酸(12ml)和浓HCl(6ml)的混合物回流3 h,滤出产物4,用热丙酮洗涤,由DMSO重结晶。已知强路易斯酸(包括 AlCl3)可催化多环芳烃和杂芳烃的脱水和缩合过程。10 在高于120°C的Fries重排温度下,其在反应混合物中的含量增加到最大5%.根据1H NMR光谱数据,化合物4以酮形式存在。然而,它们的烯醇形式已通过乙酸酐在催化量的 H 2SO4 存在下乙酰化而分离为乙酸盐 5。NaBH4 在二氧六环-甲醇中还原化合物 4 得到相应的醇 6,在 H2SO4 中脱水后得到 4-甲基当归素 2,3'-二呋喃二聚体 7(方案 2)。新化合物的熔点和光谱数据如下。 ‡ 使用 TMS 作为内标,在 200 MHz 的瓦里安 Gemini-200 光谱仪(美国)上记录 1H NMR 谱图。化学位移以 ppm 为单位。在SSQ-710(Finnigan MAT)光谱仪(美国)上以等于70 eV的电离电子能量扫描质谱图。2a:熔点 286–287 °C;1H NMR (200 MHz, [2H6]丙酮), d: 2.55 (d, 3H, 4-Me, J3,Me 1.2 Hz), 6.34 (q, 1H, 3-H, JMe,3 1.2 Hz), 6.93 [s, 1H, =(Ph)C–H], 7.48 (d, 1H, 6-H, J5,6 8.7 Hz), 7.50 (m, 3H, 3'-H, 4'-H 和 5'-H), 8.05 (m, 2H, 2'-H 和 6'-H), 8.20 (d, 1H, 5-H, J6,5 8.7 Hz);MS, m/z: 304 (M+, 61%), 计算值C19H12O4: 304.2b:熔点:330–331°C;1H NMR (200 MHz, [2H6]DMSO), d: 2.44 (d, 3H, 4-Me, J3,Me 0.9 Hz), 3.86 (s, 3H, OMe), 6.35 (q, 1H, 3-H, JMe,3 0.9 Hz), 6.85 (d, 1H, 5'-H, J6',5' 8.5 Hz), 6.90 [s, 1H, =(Ph)C–H], 7.48 (d, 1H, 6-H, J5,6 9.0), 7.49 (dd, 1H, 6'-H, J5',6' 8.5 Hz, J2',6' 0.9 Hz), 7.54 (d, 1H, 2'-H, J6',2' 0.9 Hz), 8.09 (d, 1H, 5-H, J6,5 9.0 Hz), 9.94 (s, 1H, OH);MS, m/z: 350 (M+, 100%), 计算值C20H14O6: 350.2c:熔点 354–355 °C;1H NMR (200 MHz, [2H6]DMSO), d: 2.50 (d, 3H, 4-Me, J3,Me 0.9 Hz), 6.38 (q, 1H, 3-H, JMe,3 0.9 Hz), 7.08 [s, 1H, =(Ph)C–H], 7.50 (d, 1H, 6-H, J5,6 9.0 Hz), 8.18 (d, 2H, 2'-H, J3',2' 8.5 Hz), 8.23 (d, 1H, 5-H, J6,5 9.0 Hz), 8.30 (d, 2H, 3'-H, J2',3' 8.5 Hz);MS, m/z: 349 (M+, 100%), 计算值C19H11NO6: 349.2d: 熔点 263–264 °C;1H NMR (200 MHz, [2H6]DMSO), d: 2.40 (s, 3H, 4'-Me), 2.50 (d, 3H, 4-Me, J3,Me 1.0 Hz), 2.69 [s, 3H, =(Ph)C–Me], 6.26 (q, 1H, 3-H, JMe,3 1.0 Hz), 7.20 (d, 1H, 6-H, J5,6 8.5 Hz), 7.30 (d, 2H, 3'-H, J2',3' 8.4 Hz), 7.65 (d, 2H, 2'-H, J3',2' 8.4 Hz), 8.06 (d, 1H, 5-H, J6,5 8.5 Hz);MS, m/z: 332 (M+, 86%), 计算值C21H16O4: 332.4a: 熔点 310 °C (分解);1H NMR (200 MHz, [2H6]DMSO), d: 2.42 (d, 3H, 4'-Me, J3',Me' 0.9 Hz), 2.50 (d, 3H, 4-Me, J3,Me 0.9 Hz), 6.10 (q, 1H, 3'-H, JMe',3' 0.9 Hz), 6.27 (s, 1H, 8'-H), 6.30 (q, 1H, 3-H, JMe,3 0.9 Hz), 7.16 (d, 1H, 6'-H, J5',6' 8.9 Hz), 7.64 (d, 1H, 6-H, J5,6 9.0 Hz), 7.74 (d, 1H, 5-H, J6,5 9.0 Hz), 8.10 (d, 1H, 5'-H, J6',5' 8.9 Hz), 8.45 (s, 1H, 8-H);MS, m/z: 414 (M+, 100%), 计算值C24H14O7: 414.4b: 熔点 275 °C (分解);1H NMR (200 MHz, [2H6]DMSO), d: 1.15 (t, 3H, Me', JCH2',Me' 7.7 Hz), 1.33 (t, 3H, Me, JCH2,Me 7.6 Hz), 2.42 (d, 3H, 4'-Me, J3',Me' 0.9 Hz), 2.50 (d, 3H, 4-Me, J3,Me 0.9 Hz), 2.71 (q, 2H, CH2', JMe',CH2' 7.7 Hz), 2.94 (q, 2H, CH2, JMe,CH2 7.6 Hz), 6.10 (q, 1H, 3'-H, JMe',3' 0.9 Hz), 6.32 (s, 1H, 8'-H), 6.33 (q, 1H, 3-H, JMe,3 0.9 Hz), 7.57 (s, 1H, 5-H), 7.96 (s, 1H, 5'-H), 8.56 (s, 1H, 8-H);MS, m/z: 470 (M+, 100%), 计算值C28H22O7: 470.5a:熔点313–314°C;1H NMR (200 MHz, [2H6]DMSO), d: 2.42 (s, 3H, OAc), 2.52 (2d, 6H, 4-Me 和 4'-Me), 6.37 (2q, 2H, 3-H 和 3'-H), 7.61 (d, 1H, 6'-H, J5',6' 8.7 Hz), 7.72 (d, 1H, 6-H, J5,6 8.7 Hz), 7.80 (d, 1H, 5-H, J6,5 8.7 Hz), 7.84 (d, 1H, 5'-H, J6',5' 8.7 Hz)、8.54 (s、1H、8-H);MS, m/z: 456 (M+, 2%), 计算值C26H16O8: 456.5b: 熔点 277–278 °C (分解);1H NMR (200 MHz, [2H6]DMSO), d: 1.35 (2t, 6H, Me and Me'), 2.42 (s, 3H, OAc), 2.52 (2d, 6H, 4-Me and 4'-Me), 2.97 (2q, 4H, CH2 and CH2'), 6.37 (2q, 2H, 3-H and 3'-H), 7.60 (s, 1H, 5-H), 7.66 (s, 1H, 5'-H), 8.60 (s, 1H, 8-H);MS, m/z: 512 (M+, 2%), 计算值C30H24O8: 512.O O Me O O R O + O O Me O O R 方案 1 试剂和条件:i、AcOH、HCl、100 °C、1 h. 1a 2 R R1 2a H H 2b H 4'-OH、3'-OMe 2c H 4'-NO2 2d Me 4'-me R1 R1 i 85–90%Mendeleev Communications Electronic Version,第 6 期,1997 年(第 213-252 页) 这项工作得到了俄罗斯联邦最高教育国家委员会(“精细有机合成”计划)的慷慨资助。参考文献 1 F. Dall'Acqua, D. Vedaldi, S. Caffieri, A. Guiotto, P. Rodighiero, F. Baccichetti, F. Carlassare and F. Bordin, J. Med. Chem., 1981, 24, 178.2 A.Guiotto、P.Rodighiero、P.Manzini、G.Pastorini、F.Bordin、F.Baccichetti、F.Carlassare、D.Vedaldi、F.Dall'Acqua、M.Tamaro、G.Recchia和M.Cristofolini, J. Med. Chem., 1984, 27, 959.3 F. Bordin, F. Carlassare, F. Baccichetti, A. Guiotto, P. Rodighiero, D. Vedaldi and F. Dall'Acqua, Photochem., Photobiol., 1979, 29, 1063.4 F. Dall'Acqua, D. Vedaldi, A. Guiotto, P. Rodighiero, F.Carlassare, F. Baccichetti and F. Bordin, J. Med. Chem., 1981, 24, 806.5 A. Guiotto, P. Rodighiero, G. Pastorini, P. Manzini, F. Bordin, F. Baccichetti, F. Carlassare, D. Vedaldi and F. Dall'Acqua, Eur. J. Med. Chem.-Chim.研究, 1981, 16, 489.6 F. Dall'Acqua, D. Vedaldi, F. Bordin, F. Baccichetti, F. Carlassare, M. Tamaro, P. Rodighiero, G. Pastorini, A. Guiotto, G. Recchia and M.Cristofolini, J. Med. Chem., 1983, 26, 870.7 D. Vedaldi, F. Dall'Acqua, F. Baccichetti, F. Carlassare, F. Bordin, P. Rodighiero, P. Manzini and A. Guiotto, Farmaco., 1991, 46, 1381.8 V.F.特拉文、D.V.克拉夫琴科和T.A.奇比索娃,门捷列夫公社,1995年,第21页。9 V. F. Traven, D. V. Kravtchenko, T. A. Chibisova, S. V. Shorshnev, R. Eliason 和 D. H. Wakefield, 杂环公社, 1996, 2, 345.10 H. Wang 和 L. D. Kispert, J. Chem. Soc., Perkin Trans. 2, 1989, 1463.6a:熔点 283–284 °C;1H NMR (200 MHz, [2H6]DMSO), d: 2.42 (d, 3H, 4'-Me, J3',Me' 1.0 Hz), 2.52 (d, 3H, 4-Me, J3,Me 1.0 Hz), 5.63 (d, 1H, 9'-OH, J9',9-OH' 7.2 Hz), 5.86 (dd, 1H, 9'-H, J9-OH',9' 7.2 Hz, J8',9' 7.1 Hz), 6.17 (dd, 1H, 8'-H, J9',8' 7.1 Hz, J8,8' 1.2 Hz), 6.21 (q, 1H, 3'-H, JMe',3' 1.0 Hz), 6.39 (q, 1H, 3-H, JMe,3 1.0 Hz), 7.04 (d, 1H, 6'-H, J5',6' 8.7 Hz), 7.63 (d, 1H, 6-H, J5,6 8.8 Hz), 7.74 (d, 1H, 5-H, J6,5 8.8 Hz), 8.77 (d, 1H, 5'-H, J6',5' 8.7 Hz), 8.09 (d, 1H, 8-H, J8',8 1.2 Hz);MS, m/z: 416 (M+, 29%), 计算值C24H16O7: 416.6b: 熔点 297–298 °C;1H NMR (200 MHz, [2H6]DMSO), d: 1.27 (t, 3H, Me', JCH2',Me' 7.7 Hz), 1.35 (t, 3H, Me, JCH2,Me 7.6 Hz), 2.44 (d, 3H, 4'-Me, J3',Me' 1.0 Hz), 2.52 (d, 3H, 4-Me, J3,Me 1.0 Hz), 2.73 (q, 2H, CH2', JMe',CH2' 7.7 Hz), 2.96 (q, 2H, CH2, JMe,CH2 7.6 Hz), 5.58 (d, 1H, 9'-OH, J9',9'-OH 7.2 Hz), 5.84 (dd, 1H, 9'-H, J9'-OH,9' 7.2 Hz, J8',9' 7.1 Hz), 6.15 (dd, 1H, 8'-H, J9',8' 7.1 Hz, J8,8' 1.1 Hz), 6.19 (q, 1H, 3'-H, JMe',3' 1.0 Hz), 6.36 (q, 1H, 3-H, JMe,3 1.0 Hz), 7.55 (s, 1H, 5-H), 7.57 (s, 1H, 5'-H), 8.09 (d, 1H, 8-H, J8',8 1.1 Hz);MS, m/z: 472 (M+, 28%), 计算值C28H24O7: 472.7a:熔点 319–320 °C;1H NMR (200 MHz, [2H6]DMSO), d: 2.51 (2d, 6H, 4-Me 和 4'-Me), 6.34 (q, 1H, 3'-H, JMe',3' 1.0 Hz), 6.44 (q, 1H, 3-H, JMe,3 1.0 Hz), 7.54 (d, 1H, 6'-H, J5',6' 8.7 Hz), 7.64 (d, 1H, 6-H, J5,6 8.9 Hz), 7.66 (d, 1H, 5-H, J6,5 8.9 Hz), 7.78 (d, 1H, 5'-H, J6',5' 8.7 Hz), 7.91 (s, 1H, 9'-H), 8.65 (s, 1H, 8-H);MS, m/z: 398 (M+, 100%), 计算值 C24H14O6: 398.7b: 熔点 315–316 °C;1H NMR (200 MHz, [2H6]DMSO), d: 1.36 (2t, 6H, Me and Me'), 2.51 (2d, 6H, 4-Me and 4'-Me), 2.99 (2q, 4H, CH2 and CH2'), 6.31 (q, 1H, 3'-H, JMe',3' 0.9 Hz), 6.40 (q, 1H, 3-H, JMe,3 0.9 Hz), 7.47 (s, 1H, 5-H), 7.59 (s, 1H, 5'-H), 7.86 (s, 1H, 9'-H), 8.67 (秒, 1H, 8-H);MS, m/z: 454 (M+, 100%), 计算值 C28H22O6: 454.O O O O O ME R HO O ME R O 1 i 85% O O ME R O O ME R O ME R O ME R O ME R R O ME R 6 iv 60% iii 65% O O ME R O ME R O Ac 3 2e 5 4 7 a r = h b r = Et 方案2 试剂和条件:i,AcOH,HCl,100°C,3 h;ii, Ac2O, H 2SO4, 120 °C, 1 h;iii, NaBH4, 二氧六环, MeOH, 20 °C, 2 h;iv, 20% H2SO4, EtOH, 80 °C, 3 小时. ii 75% 收稿日期: 莫斯科, 1997年3月20日 剑桥, 1997年7月17日;公司 7/02263H

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号