...
首页> 外文期刊>Journal of Neuropathology and Experimental Neurology: Official Journal of the American Association of Neuropathologists, Inc >Bone Marrow-Derived Mesenchymal Stem Cell-Derived Exosomes Containing Gli1 Alleviate Microglial Activation and Neuronal Apoptosis In Vitro and in a Mouse Parkinson Disease Model by Direct Inhibition of Sp1 Signaling
【24h】

Bone Marrow-Derived Mesenchymal Stem Cell-Derived Exosomes Containing Gli1 Alleviate Microglial Activation and Neuronal Apoptosis In Vitro and in a Mouse Parkinson Disease Model by Direct Inhibition of Sp1 Signaling

机译:Bone Marrow-Derived Mesenchymal Stem Cell-Derived Exosomes Containing Gli1 Alleviate Microglial Activation and Neuronal Apoptosis In Vitro and in a Mouse Parkinson Disease Model by Direct Inhibition of Sp1 Signaling

获取原文
获取原文并翻译 | 示例
           

摘要

This study investigated possible therapeutic effect mechanisms of exosomes from bone marrow-derived mesenchymal stem cells (BMSC) in neuronal and microglial cells and in a Parkinson disease (PD) model. Neuronal SH-SY5Y cells and microglial HMC3 cells were subjected to 1-methyl-4-phenylpyridinium (MPP+) or LPS, respectively. The mRNA and protein expression was assessed using qRT-PCR, Western blotting, and enzyme-linked immunosorbent assay. Cell viability and apoptosis of SH-SY5Y cells were examined using the MTT assay and flow cytometry. Chromatin immunoprecipitation assays were performed to assess the binding relationship between glioma-associated oncogene homolog 1 (Gli1) and the Sp1 transcription factor promoter. BMSC-derived exosomes promoted cell proliferation and inhibited apoptosis in MPP+-treated SH-SY5Y cells and suppressed inflammatory markers in LPS-treated HMC3 cells. Sp1 knockdown decreased SH-SY5Y cell damage and HMC3 immune activation. Gli1 carried by BMSC exosomes directly bound with Sp1 to inhibit Sp1-mediated LRRK2 activation whereas exosomes secreted by Gli1-knockdown in BMSC did not. In a PD mouse model induced with MPTP, BMSC exosomes decreased neuron loss injury and the inflammatory response by inhibiting Sp1 signaling. Thus, BMSC-derived exosomal Gli1 alleviates inflammatory damage and neuronal apoptosis by inhibiting Sp1 in vitro and in vivo. These findings provide the basis for the potential clinical use of BMSC-derived exosomes in PD.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号