...
首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >A machine learning-based probabilistic computational framework for uncertainty quantification of actuation of clustered tensegrity structures
【24h】

A machine learning-based probabilistic computational framework for uncertainty quantification of actuation of clustered tensegrity structures

机译:一种基于机器学习的概率计算框架,用于簇状张力结构驱动不确定性量化

获取原文
获取原文并翻译 | 示例

摘要

Clustered tensegrity structures integrated with continuous cables are lightweight, foldable, and deployable. Thus, they can be used as flexible manipulators or soft robots. The actuation process of such soft structure has high probabilistic sensitivity. It is essential to quantify the uncertainty of actuated responses of the tensegrity structures and to modulate their deformation accurately. In this work, we propose a comprehensive data-driven computational approach to study the uncertainty quantification (UQ) and probability propagation in clustered tensegrity structures, and we have developed a surrogate optimization model to control the flexible structure deformation. An example of clustered tensegrity beam subjected to a clustered actuation is presented to demonstrate the validity of the approach and its potential application. The three main novelties of the data-driven framework are: (1) The proposed model can avoid the difficulty of convergence in nonlinear Finite Element Analysis (FEA), by two machine learning methods, the Gauss Process Regression (GPR) and Neutral Network (NN). (2) A fast real-time prediction on uncertainty propagation can be achieved by the surrogate model, and (3) Optimization of the actuated deformation comes true by using both Sequence Quadratic Programming (SQP) and Bayesian optimization methods. The results have shown that the proposed data-driven computational approach is powerful and can be extended to other UQ models or alternative optimization objectives.
机译:与连续电缆集成的簇状张力结构重量轻、可折叠且可展开。因此,它们可以用作柔性机械手或软机器人。这种软结构的驱动过程具有很高的概率灵敏度。量化张力结构驱动响应的不确定性并准确调制其变形至关重要。在这项工作中,我们提出了一种全面的数据驱动的计算方法来研究团簇张力结构中的不确定性量化(UQ)和概率传播,并建立了一种代理优化模型来控制柔性结构变形。给出了一个簇状张力梁受簇致动的实例,以证明该方法的有效性及其潜在的应用。数据驱动框架的三个主要创新点是:(1)所提模型通过高斯过程回归(GPR)和中性网络(NN)两种机器学习方法,可以避免非线性有限元分析(FEA)的收敛困难。(2)通过代理模型可以实现对不确定性传播的快速实时预测,(3)利用序列二次规划(SQP)和贝叶斯优化方法实现致动变形的优化。结果表明,所提出的数据驱动计算方法功能强大,可以扩展到其他UQ模型或替代优化目标。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号