...
首页> 外文期刊>CERAMICS INTERNATIONAL >The effect of honeycomb pore size on the electromagnetic interference shielding performance of multifunctional 3D honeycomb-like Ag/Ti3C2Tx hybrid structures
【24h】

The effect of honeycomb pore size on the electromagnetic interference shielding performance of multifunctional 3D honeycomb-like Ag/Ti3C2Tx hybrid structures

机译:The effect of honeycomb pore size on the electromagnetic interference shielding performance of multifunctional 3D honeycomb-like Ag/Ti3C2Tx hybrid structures

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

? 2022 Elsevier Ltd and Techna Group S.r.l.To solve pollution problems caused by electromagnetic waves, advanced three-dimensional (3D) honeycomb Ag/Ti3C2Tx hybrid materials were produced by a microwave hydrothermal method. The Ag/Ti3C2Tx hybrid materials retained their hollow sphere structure after the polymethyl methacrylate (PMMA) template was removed by annealing. The hybrid materials changed from hydrophilic to hydrophobic and exhibited cross-surface heat insulation and reflection-dominant electromagnetic interference shielding (EMIS) performance owing to their special honeycomb structure. This study innovatively explored the influence of different particle sizes of honeycomb holes on EMIS performance. In particular, the Ag/Ti3C2Tx 5 μm hybrid materials had an excellent average EMIS performance of 51.15 dB in the X-band and 56.64 dB in the Ku-band. The superior performance was due to conduction loss, interface polarization, multi-reflection, and scattering caused by the 3D porous structure of the Ag/Ti3C2Tx hybrid materials. In general, Ag/Ti3C2Tx hybrid materials with honeycomb structures retained the advantages of lightweight, hydrophobicity, and EMIS performance, illustrating the great application prospects of these materials in high-end electronic equipment.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号