首页> 外文期刊>Optical and Quantum Electronics >Numerical optimization of (FTO/ZnO/CdS/CH3NH3SnI3/GaAs/Au) perovskite solar cell using solar capacitance simulator with efficiency above 23 predicted
【24h】

Numerical optimization of (FTO/ZnO/CdS/CH3NH3SnI3/GaAs/Au) perovskite solar cell using solar capacitance simulator with efficiency above 23 predicted

机译:利用太阳能电容模拟器对(FTO/ZnO/CdS/CH3NH3SnI3/GaAs/Au)钙钛矿太阳能电池进行数值优化,预测效率高于23

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract The presented study deals with the investigations of the methyl ammonium tin halide (CH3NH3SnI3) based perovskite solar cells for optimized device performance using solar capacitance simulations software. Several necessary parameters such as metal work functions, thickness of structural layers, charge carrier’s mobility and defect density have been explored to evaluate the device performance. Calculations reveal that for the best efficiency of device the maximum thickness of the perovskite (CH3NH3SnI3) absorber layer must be 4.2 μm. The thickness values of 0.01 μm for ZnO electron transport layer (ETL), 0.871 μm for GaAs hole transport layer and 0.001 μm for CdS buffer layer have been found which proved to be optimum for maximum power conversion efficiency (PCE) of 23.80 for the device. The variation of open circuit voltage (Voc), Short circuit current (Jsc), Fill Factor (FF ), quantum efficiency (QE) against thickness of all layers and interface defect densities in FTO/ZnO/CdS/CH3NH3SnI3/GaAs/Au composition have been critically explored and their crucial role for the device performance has been reported. Heterojunctions between ZnO-ETL and CdS buffer layers have shown improved device performance and PCE. Current investigations may prove to be useful for designing and fabrication of climate friendly, non-toxic and highly efficient solar cells.
机译:摘要 本研究利用太阳能电容模拟软件研究了甲基卤化锡铵(CH3NH3SnI3)钙钛矿太阳能电池优化器件性能。已经探索了几个必要的参数,如金属加工函数、结构层厚度、电荷载流子的迁移率和缺陷密度,以评估器件的性能。计算表明,为了获得器件的最佳效率,钙钛矿 (CH3NH3SnI3) 吸收层的最大厚度必须为 4.2 μm。ZnO电子传输层(ETL)的厚度值为0.01 μm,GaAs空穴传输层的厚度值为0.871 μm,CdS缓冲层的厚度值为0.001 μm,证明该器件的最大功率转换效率(PCE)为23.80%。本文对FTO/ZnO/CdS/CH3NH3SnI3/GaAs/Au成分中开路电压(Voc)、短路电流(Jsc)、填充因子(FF %)、量子效率(QE)随各层厚度的变化以及界面缺陷密度进行了深入研究,并报道了它们对器件性能的关键作用。ZnO-ETL 和 CdS 缓冲层之间的异质结显示出器件性能和 PCE 的改善。目前的研究可能被证明可用于设计和制造气候友好、无毒和高效的太阳能电池。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号