...
首页> 外文期刊>Advanced Materials >Molecular Self-Assembly Enables Tuning of Nanopores in Atomically Thin Graphene Membranes for Highly Selective Transport
【24h】

Molecular Self-Assembly Enables Tuning of Nanopores in Atomically Thin Graphene Membranes for Highly Selective Transport

机译:分子自组装能够调整原子薄石墨烯膜中的纳米孔,以实现高选择性运输

获取原文
获取原文并翻译 | 示例

摘要

Atomically thin membranes comprising nanopores in a 2D material promise to surpass the performance of polymeric membranes in several critical applications, including water purification, chemical and gas separations, and energy harvesting. However, fabrication of membranes with precise pore size distributions that provide exceptionally high selectivity and permeance in a scalable framework remains an outstanding challenge. Circumventing these constraints, here, a platform technology is developed that harnesses the ability of oppositely charged polyelectrolytes to self-assemble preferentially across larger, relatively leaky atomically thin nanopores by exploiting the lower steric hindrance of such larger pores to molecular interactions across the pores. By selectively tightening the pore size distribution in this manner, self-assembly of oppositely charged polyelectrolytes simultaneously introduced on opposite sides of nanoporous graphene membranes is demonstrated to discriminate between nanopores to seal non-selective transport channels, while minimally compromising smaller, water-selective pores, thereby remarkably attenuating solute leakage. This improved membrane selectivity enables desalination across centimeter-scale nanoporous graphene with 99.7 and 90 rejection of MgSO4 and NaCl, respectively, under forward osmosis. These findings provide a versatile strategy to augment the performance of nanoporous atomically thin membranes and present intriguing possibilities of controlling reactions across 2D materials via exclusive exploitation of pore size-dependent intermolecular interactions.
机译:在二维材料中包含纳米孔的原子薄膜有望在几个关键应用中超越聚合物膜的性能,包括水净化、化学和气体分离以及能量收集。然而,制造具有精确孔径分布的膜,在可扩展的框架中提供极高的选择性和渗透性仍然是一个突出的挑战。为了规避这些限制,这里开发了一种平台技术,该技术利用带相反电荷的聚电解质的能力,通过利用这种较大孔对跨孔隙分子相互作用的较低空间位阻,优先在较大、相对泄漏的原子薄纳米孔中自组装。通过以这种方式选择性地收紧孔径分布,在纳米多孔石墨烯膜的相对两侧同时引入带相反电荷的聚电解质的自组装被证明可以区分纳米孔以密封非选择性传输通道,同时最大限度地减少较小的水选择性孔,从而显着减弱溶质泄漏。这种改进的膜选择性使得在正向渗透下对 MgSO4 和 NaCl 的截留率分别为 99.7% 和 >90%,从而在厘米尺度的纳米多孔石墨烯上进行脱盐。这些发现提供了一种通用的策略来增强纳米多孔原子薄膜的性能,并通过独家利用孔径依赖性分子间相互作用来控制跨 2D 材料的反应。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号