...
首页> 外文期刊>Chemistry of Materials: A Publication of the American Chemistry Society >Physically Informed Machine Learning Prediction of Electronic Density of States
【24h】

Physically Informed Machine Learning Prediction of Electronic Density of States

机译:Physically Informed Machine Learning Prediction of Electronic Density of States

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The electronic structure of a material, such as its density of states (DOS), provides key insights into its physical and functional properties and serves as a valuable source of high-quality features for many materials screening and discovery workflows. However, the computational cost of calculating the DOS, most commonly with density functional theory (DFT), becomes prohibitive for meeting high-fidelity or high-throughput requirements, necessitating a cheaper but sufficiently accurate surrogate. To fulfill this demand, we develop a general machine learning method based on graph neural networks for predicting the DOS purely from atomic positions, six orders of magnitude faster than DPT. This approach can effectively use large materials databases and be applied generally across the entire periodic table to materials classes of arbitrary compositional and structural diversity. We furthermore devise a highly adaptable scheme for physically informed learning which encourages the DOS prediction to favor physically reasonable solutions defined by any set of desired constraints. This functionality provides a means for ensuring that the predicted DOS is reliable enough to be used as an input to downstream materials screening workflows to predict more complex functional properties, which rely on accurate physical features.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号