首页> 外文期刊>International journal of hydrogen energy >In situ construction of heterostructure NiSe-NiO nanoarrays with rich oxygen vacancy on MXene for efficient oxygen evolution
【24h】

In situ construction of heterostructure NiSe-NiO nanoarrays with rich oxygen vacancy on MXene for efficient oxygen evolution

机译:在MXene上原位构建具有丰富氧空位的异质结构NiSe-NiO纳米阵列,实现高效析氧

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Developing high-efficiency, non-noble, earth-available electrocatalysts for the oxygen evolution reaction (OER) is vital for electrochemical energy conversion, but it is still chal-lenging. Herein, we ingeniously designed a partial selenization method to construct NiSe-NiO heterostructure grown in situ on Ta4C3Tx MXene (denoted as NiSe-NiO/Ta4C3Tx MXene). NiSe-NiO/Ta4C3Tx MXene's plethora of heterointerfaces provides a wealth of active sites, fast charge and mass transfer, and favorable adsorption energies for OER in-termediates, all of which contribute synergistically to the oxidation of alkaline water. As expected, taking advantage of the strong chemical and electron synergistic effects of NiSe and NiO, the synthesized NiSe-NiO/Ta4C3Tx MXene exhibits excellent activity for OER with a low overpotential of 255 mV at 10 mA cm(-2), a small Tafel slope of 47.4 mV dec(-1), as well as excellent long-term stability, exceeding that of its competitors. This study offers a novel synthetic route toward developing high-performance OER electrocatalysts for renewable energy conversion/storage systems and beyond by optimizing the catalysts' composition and architecture. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:开发用于析氧反应(OER)的高效、非贵金属、可接地电催化剂对于电化学能量转换至关重要,但仍具有挑战性。在此,我们巧妙地设计了一种部分硒化方法,在Ta4C3Tx MXene(记号为NiSe-NiO/Ta4C3Tx MXene)上原位生长的NiSe-NiO异质结。NiSe-NiO/Ta4C3Tx MXene的大量异质界面为OER介质提供了丰富的活性位点、快速的电荷和传质以及有利的吸附能,所有这些都协同促进了碱性水的氧化。正如预期的那样,利用NiSe和NiO强大的化学和电子协同效应,合成的NiSe-NiO/Ta4C3Tx MXene在10 mA cm(-2)时具有255 mV的低过电位,47.4 mV dec(-1)的小Tafel斜率,以及优异的长期稳定性,超过了竞争对手。本研究通过优化催化剂的组成和结构,为开发用于可再生能源转换/存储系统及其他系统的高性能OER电催化剂提供了一种新的合成途径。(c) 2022 Hydrogen Energy Publications LLC.,由爱思唯尔有限公司出版。保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号