首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification
【24h】

Hybrid thermal modeling of additive manufacturing processes using physics-informed neural networks for temperature prediction and parameter identification

机译:使用基于物理的神经网络对增材制造过程进行混合热建模,以进行温度预测和参数识别

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Understanding the thermal behavior of additive manufacturing (AM) processes is crucial for enhancing the quality control and enabling customized process design. Most purely physics-based computational models suffer from intensive computational costs and the need of calibrating unknown parameters, thus not suitable for online control and iterative design application. Data-driven models taking advantage of the latest developed computational tools can serve as a more efficient surrogate, but they are usually trained over a large amount of simulation data and often fail to effectively use small but high-quality experimental data. In this work, we developed a hybrid physics-based data-driven thermal modeling approach of AM processes using physics-informed neural networks. Specifically, partially observed temperature data measured from an infrared camera is combined with the physics laws to predict full-field temperature history and to discover unknown material and process parameters. In the numerical and experimental examples, the effectiveness of adding auxiliary training data and using the pretrained model on training efficiency and prediction accuracy, as well as the ability to identify unknown parameters with partially observed data, are demonstrated. The results show that the hybrid thermal model can effectively identify unknown parameters and capture the full-field temperature accurately, and thus it has the potential to be used in iterative process design and real-time process control of AM.
机译:了解增材制造 (AM) 工艺的热行为对于加强质量控制和实现定制工艺设计至关重要。大多数纯基于物理的计算模型都存在密集的计算成本和校准未知参数的需要,因此不适合在线控制和迭代设计应用。利用最新开发的计算工具的数据驱动模型可以作为更有效的替代物,但它们通常是在大量模拟数据上训练的,并且通常无法有效地使用小而高质量的实验数据。在这项工作中,我们开发了一种基于混合物理的数据驱动的增材制造过程热建模方法,使用基于物理的神经网络。具体来说,从红外热像仪测量的部分观测温度数据与物理定律相结合,以预测全场温度历史并发现未知的材料和工艺参数。在数值和实验算例中,证明了添加辅助训练数据和使用预训练模型对训练效率和预测精度的有效性,以及利用部分观测数据识别未知参数的能力。结果表明,混合热模型能够有效识别未知参数并准确捕获全场温度,具有应用于增材制造的迭代工艺设计和实时过程控制的潜力。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号