...
首页> 外文期刊>Global change biology >Wetting‐induced soil CO2 emission pulses are driven by interactions among soil temperature, carbon, and nitrogen limitation in the Colorado Desert
【24h】

Wetting‐induced soil CO2 emission pulses are driven by interactions among soil temperature, carbon, and nitrogen limitation in the Colorado Desert

机译:湿润诱导的土壤CO2排放脉冲是由科罗拉多沙漠土壤温度、碳和氮限制之间的相互作用驱动的

获取原文
获取原文并翻译 | 示例

摘要

Abstract Warming‐induced changes in precipitation regimes, coupled with anthropogenically enhanced nitrogen (N) deposition, are likely to increase the prevalence, duration, and magnitude of soil respiration pulses following wetting via interactions among temperature and carbon (C) and N availability. Quantifying the importance of these interactive controls on soil respiration is a key challenge as pulses can be large terrestrial sources of atmospheric carbon dioxide (CO2) over comparatively short timescales. Using an automated sensor system, we measured soil CO2 flux dynamics in the Colorado Desert—a system characterized by pronounced transitions from dry‐to‐wet soil conditions—through a multi‐year series of experimental wetting campaigns. Experimental manipulations included combinations of C and N additions across a range of ambient temperatures and across five sites varying in atmospheric N deposition. We found soil CO2 pulses following wetting were highly predictable from peak instantaneous CO2 flux measurements. CO2 pulses consistently increased with temperature, and temperature at time of wetting positively correlated to CO2 pulse magnitude. Experimentally adding N along the N deposition gradient generated contrasting pulse responses: adding N increased CO2 pulses in low N deposition sites, whereas adding N decreased CO2 pulses in high N deposition sites. At a low N deposition site, simultaneous additions of C and N during wetting led to the highest observed soil CO2 fluxes reported globally at 299.5 μmol CO2 m−2 s−1. Our results suggest that soils have the capacity to emit high amounts of CO2 within small timeframes following infrequent wetting, and pulse sizes reflect a non‐linear combination of soil resource and temperature interactions. Importantly, the largest soil CO2 emissions occurred when multiple resources were amended simultaneously in historically resource‐limited desert soils, pointing to regions experiencing simultaneous effects of desertification and urbanization as key locations in future global C balance.
机译:摘要 增温引起的降水状态变化,加上人为增强的氮沉降,可能通过温度、碳(C)和氮有效性的相互作用增加润湿后土壤呼吸脉冲的流行率、持续时间和幅度。量化这些交互式控制对土壤呼吸的重要性是一项关键挑战,因为豆类在相对较短的时间尺度上可能是大气二氧化碳 (CO2) 的主要陆地来源。使用自动传感器系统,我们通过一系列实验性润湿活动测量了科罗拉多沙漠的土壤 CO2 通量动态——该系统的特点是从干燥到潮湿的土壤条件的明显转变。实验操作包括在一系列环境温度和大气氮沉降变化的五个地点添加 C 和 N 添加的组合。我们发现,从峰值瞬时CO2通量测量中,润湿后的土壤CO2脉冲具有高度可预测性。CO2脉冲随温度的增加而持续增加,润湿时的温度与CO2脉冲幅度呈正相关。通过实验,沿 N 沉积梯度添加 N 会产生对比性的脉冲响应:添加 N 会增加低 N 沉积位点的 CO2 脉冲,而添加 N 会增加高 N 沉积位点的 CO2 脉冲。在低氮沉积位点,在润湿过程中同时添加C和N导致全球观测到的土壤CO2通量最高,为299.5 μmol CO2 m−2 s−1。我们的结果表明,在不频繁的润湿之后,土壤有能力在短时间内排放大量二氧化碳,并且脉冲大小反映了土壤资源和温度相互作用的非线性组合。重要的是,在历史上资源有限的沙漠土壤中,当多种资源同时被修正时,土壤二氧化碳排放量最大,这表明同时经历荒漠化和城市化影响的地区是未来全球碳平衡的关键地点。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号