...
首页> 外文期刊>Combustion and Flame >Effect of preheating air temperature on sooting tendency in laminar co-flow diffusion flame of n-heptane
【24h】

Effect of preheating air temperature on sooting tendency in laminar co-flow diffusion flame of n-heptane

机译:Effect of preheating air temperature on sooting tendency in laminar co-flow diffusion flame of n-heptane

获取原文
获取原文并翻译 | 示例
           

摘要

This work investigates the effect of preheating air temperature on the sooting tendency in the laminar co-flow diffusion flames of n-heptane. A modified co-flow burner was employed to produce steady n-heptane laminar diffusion flames with the preheating temperatures of co-flow air varying from 344 K to 588 K. The planar laser-induced incandescence (LII) calibrated by the line-of-sight attenuation (LOSA) was performed to quantitatively measure the soot volume fraction and the soot yield in flames and an ICCD camera was used to capture the flame luminosity images. The results reveal that the visible flame height is decreased with the preheating co-flow air temperature, and it is hardly affected by the air velocity with a constant air temperature. As the co-flow air temperature increases, the soot inception and oxidation and the peak soot concentration initiate at the lower positions in flames, and the soot loading in flames has a remarkable increasing trend by assessing the evolution of the soot volume fraction and the soot yield. However, the enhancement rate of total soot loading in flames with the co-flow air temperature below the initial fuel temperature is lower than that for the co-flow air temperature above the initial fuel temperature. In addition, the temperature sensitivity of soot loading is assessed by the maximum soot volume fraction, which is in accordance with those of the alkane in previous research. According to the response of the maximum soot yield to the co-flow air temperature and adiabatic flame temperature, the temperature sensitivity of sooting tendency in n-heptane flames is further confirmed.(c) 2023 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号