首页> 外文期刊>Structure >Molecular architecture and dynamics of SARS-CoV-2 envelope by integrative modeling
【24h】

Molecular architecture and dynamics of SARS-CoV-2 envelope by integrative modeling

机译:Molecular architecture and dynamics of SARS-CoV-2 envelope by integrative modeling

获取原文
获取原文并翻译 | 示例
       

摘要

Despite tremendous efforts, the exact structure of SARS-CoV-2 and related betacoronaviruses remains elusive. SARS-CoV-2 envelope is a key structural component of the virion that encapsulates viral RNA. It is composed of three structural proteins, spike, membrane (M), and envelope, which interact with each other and with the lipids acquired from the host membranes. Here, we developed and applied an integrative multi -scale computational approach to model the envelope structure of SARS-CoV-2 with near atomistic detail, focusing on studying the dynamic nature and molecular interactions of its most abundant, but largely under-studied, M protein. The molecular dynamics simulations allowed us to test the envelope stability under different configurations and revealed that the M dimers agglomerated into large, filament-like, macromolec-ular assemblies with distinct molecular patterns. These results are in good agreement with current experi-mental data, demonstrating a generic and versatile approach to model the structure of a virus de novo.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号