...
首页> 外文期刊>International journal of hydrogen energy >Feasibility analysis of blending hydrogen into natural gas networks
【24h】

Feasibility analysis of blending hydrogen into natural gas networks

机译:Feasibility analysis of blending hydrogen into natural gas networks

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

? 2023 Hydrogen Energy Publications LLCHydrogen fuel has the potential to mitigate the negative effects of greenhouse gases and climate change by neutralizing carbon emissions. Transporting large volume of hydrogen through pipelines needs hydrogen-specific infrastructure such as hydrogen pipelines and compressors, which can become an economic barrier. Thus, the idea of blending hydrogen into existing natural gas pipelines arises as a potential alternative for transporting hydrogen economically by using existing natural gas grids. However, there are several potential issues that must be considered when blending hydrogen into natural gas pipelines. Hydrogen has different physical and chemical properties from natural gas, including a smaller size and lighter weight, which require higher operating pressures to deliver the same amount of energy as natural gas. Additionally, hydrogen's small molecular size and lower ignition energy make it more likely to permeate through pipeline materials and seals, leading to degradation, and its wider flammability limits make it a safety hazard when leaks occur. In this study, we investigate these potential issues through simulation and technical surveys. We develop a gas hydraulic model to simulate the physical characteristics of a transmission and a distribution pipeline. This model is used throughout the study to visualize the potential impacts of switching from natural gas to hydrogen, and to investigate potential problems and solutions. Furthermore, we develop a Real-Time Transient Model (RTTM) to address the compatibility of current computational pipeline monitoring (CPM) based leak detection methods with blended hydrogen. Finally, we suggest the optimal hydrogen concentration for this model, and investigate the amount of carbon reduction that could be achieved, while considering the energy needs of the system.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号