...
首页> 外文期刊>International journal of energy research >In situ synthesis of star copolymers consisting of a polyhedral oligomeric silsesquioxane core and poly(2,5-benzimidazole) arms for high-temperature proton exchange membrane fuel cells
【24h】

In situ synthesis of star copolymers consisting of a polyhedral oligomeric silsesquioxane core and poly(2,5-benzimidazole) arms for high-temperature proton exchange membrane fuel cells

机译:In situ synthesis of star copolymers consisting of a polyhedral oligomeric silsesquioxane core and poly(2,5-benzimidazole) arms for high-temperature proton exchange membrane fuel cells

获取原文
获取原文并翻译 | 示例
           

摘要

Star copolymers with good film-forming and mechanical properties were in situ synthesized for fabricating proton exchange membranes. The monomers of 3,4-diaminobenzoic acid were first grafted onto glycidyl-polyhedral oligomeric silsesquioxane (G-POSS) cores and then propagated to the poly(2,5-benzimidazole) (ABPBI) chains. The introduction of the star copolymer improves the movement of the ABPBI polymer chains, resulting in a lower internal viscosity and larger free volume that favor increased membrane flatness and absorbilities of water and phosphoric acid molecules, respectively. It was found that the star copolymers with 1.0 wt of incorporated POSS (ABPBI-1.0POSS) had the best balance of the acid retentivity and film-forming property as well as mechanical properties that are desirable for proton exchange membranes without PA loss operating at high temperatures. The enhanced cell performance characteristics obtained using the ABPBI-1.0POSS-based membranes indicate that star copolymers are promising materials for use in high-temperature proton exchange membrane fuel cells.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号