首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >Isogeometric blended shells for dynamic analysis: simulating aircraft takeoff and the resulting fatigue damage on the horizontal stabilizer
【24h】

Isogeometric blended shells for dynamic analysis: simulating aircraft takeoff and the resulting fatigue damage on the horizontal stabilizer

机译:用于动态分析的等几何混合壳体:模拟飞机起飞和水平安定面上的疲劳损伤

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Aircraft horizontal stabilizers are prone to fatigue damage induced by the flow separation from aircraft wings and the subsequent impingement on the stabilizer structure in its wake, which is known as a buffet event. In this work, the previously developed isogeometric blended shell approach is reformulated in a dynamic analysis setting for the simulation of aircraft takeoff using varying pitch angles. The proposed Kirchhoff-Love (KL) and continuum shell blending allows the critical structural components of the aircraft horizontal stabilizer to be modeled using continuum shells to obtain high-fidelity 3D stresses, whereas the less critical components are modeled using computationally efficient KL thin shells. The imposed aerodynamic loads are generated from a hybrid immersogeometric and boundary-fitted computational fluid dynamics (CFD) analysis to accurately record the dynamic excitation on the stabilizer external surface. Specifically, the entire aircraft except for the wings and stabilizers is immersed into a non-boundary-fitted fluid domain based on the immersogeometric analysis (IMGA) concept for computational savings, whereas the mesh surrounding the aircraft wing and stabilizers is boundary-fitted to accurately compute the aerodynamic loads on the stabilizer. The obtained time histories of the loads are then applied to dynamic blended shell analysis of the horizontal stabilizer, and the high-fidelity stress response is evaluated for subsequent fatigue assessment. A simple frequency-domain fatigue analysis is then carried out to evaluate the buffet-induced fatigue damage of the stabilizer. The results from both the steady-state and dynamic nonlinear blended shell analyses of a representative horizontal stabilizer demonstrate the numerical accuracy and computational efficiency of the proposed approach.
机译:飞机水平安定面容易因与飞机机翼的流动分离以及随后在其尾流中撞击安定面结构而引起的疲劳损伤,这被称为自助餐事件。在这项工作中,先前开发的等几何混合壳方法在动态分析设置中重新制定,用于使用不同俯仰角模拟飞机起飞。所提出的基尔霍夫-洛夫 (KL) 和连续壳混合允许使用连续壳对飞机水平稳定器的关键结构部件进行建模,以获得高保真 3D 应力,而不太关键的部件则使用计算效率高的 KL 薄壳进行建模。施加的空气动力载荷由混合浸入几何和边界拟合计算流体动力学 (CFD) 分析生成,以准确记录稳定器外表面的动态激励。具体来说,除了机翼和稳定器外,整个飞机都浸入了一个基于浸入几何分析(IMGA)概念的非边界拟合流体域中,以节省计算成本,而围绕飞机机翼和稳定器的网格是边界拟合的,以准确计算稳定器上的空气动力载荷。然后,将得到的载荷时间历史应用于水平稳定器的动态混合壳分析,并评估高保真应力响应,用于后续疲劳评估。然后进行简单的频域疲劳分析,以评估稳定器的自助餐引起的疲劳损伤。对具有代表性的水平稳定器进行稳态和动态非线性混合壳层分析的结果验证了所提方法的数值精度和计算效率。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号